常微分方程求解器ODE solver

对于常微分方程的初值问题{dydt=f(t,y),t∈[a,b]y(a)=y0(1)\left\{ \begin{array}{l}\frac{{dy}}{{dt}} = f(t,y),t \in \left[ {a,b} \right]\\y\left( a \right) = {y_0}\end{array} \right.\tag{1}{dtdy​=f(t,y),t∈[a,b]y(a)=y0​​(1)有以下解的存在性定理:定义一个ODEsolver类来使用各种方法求解常微分方程,使用待
摘要由CSDN通过智能技术生成

IVP问题

对于常微分方程的初值问题
{ d y d t = f ( t , y ) , t ∈ [ a , b ] y ( a ) = y 0 (1) \left\{ \begin{array}{l} \frac{ {dy}}{ {dt}} = f(t,y),t \in \left[ {a,b} \right]\\ y\left( a \right) = {y_0} \end{array} \right.\tag{1} { dtdy=f(t,y),t[a,b]y(a)=y0(1)
有以下解的存在性、唯一性定理:

假设 f ( t , y ) f(t,y) f(t,y)定义在集合 [ a , b ] × [ α , β ] [a,b]\times[\alpha,\beta] [a,b]×[α,β]并且初值 α < y 0 < β \alpha<y_0<\beta α<y0<β,函数对于变量 y y y是Lipschitz连续,则在 a a a b b b之间存在 c c c,使得初值问题
{ d y d t = f ( t , y ) , t ∈ [ a , b ] y ( a ) = y 0 t ∈ [ a , c ] (2) \left\{ \begin{array}{l} \frac{ {dy}}{ {dt}} = f(t,y),t \in \left[ {a,b} \right]\\ y\left( a \right) = {y_0}\\ t\in[a,c] \end{array} \right.\tag{2} dtdy=f(t,y),t[a,b]y(a)=y0t[a,c](2)
有唯一解 y ( t ) y(t) y(t)。而且,如果 f f f [ a , b ] × [ − ∞ , + ∞ ] [a,b]\times[-\infty,+\infty] [a,b]×[,+]上是Lipschitz连续,则其在 [ a , b ] [a,b] [a,b]上存在唯一解。

定义一个ODEsolver类来使用各种方法求解常微分方程,使用待求解的函数和初始值来初始化该类:

class ODEsolver:
    def __init__(self,fun,t0,y0):
        self.fun=fun
        self.t0=t0
        self.y0=y0

Euler显式格式

Euler方法为:
{ w 0 = y 0 w i + 1 = w i + h f ( t i , w i ) (2) \left\{ \begin{array}{l} {w_0} = {y_0}\\ {w_{i + 1}} = {w_i} + hf\left( { {t_i},{w_i}} \right) \end{array} \right.\tag{2} { w0=y0wi+1=wi+hf(ti,wi)(2)
代码为:

    def eulersolver(self,tend,step=None):
        if step is None:
            step=(tend-self.t0)/1e3
        from ArrayTable import ArrayTable
        result=ArrayTable(2,0)
        result.setTableHeader(["$t$","$y(t)$"])
        result.setTableUnit(["/","/"])
        result.append([self.t0,self.y0])
        t=self.t0
        while t<tend:
            ynext=result.table[1].data[-1]+self.fun(t,result.table[1].data[-1])*step
            result.append([t+step,ynext])
            t+=step
        return result

隐式Euler法

隐式Euler法的原理为:
{ w 0 = y 0 w i + 1 = w i + h f ( t

  • 2
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
常微分方程初值解法(Initial Value Problems)是求解一个给定初始条件下的常微分方程的数值解。在C++中,我们可以使用数值求解库(如Boost.Numeric.Odeint和GNU Scientific Library等)来解决这个问题。 其中,Boost.Numeric.Odeint是一个非常流行的C++库,可以用于数值求解常微分方程(ODEs)和偏微分方程(PDEs)等问题。它提供了多种常见的ODE求解,包括欧拉法、龙格库塔法、Adams-Bashforth法、Bulirsch-Stoer法等等。 下面是使用Boost.Numeric.Odeint解决常微分方程初值问题的示例代码: ``` #include <iostream> #include <boost/numeric/odeint.hpp> using namespace std; using namespace boost::numeric::odeint; // 定义常微分方程 void harmonic_oscillator(const double x, double &dxdt, const double t) { dxdt = -x; } int main() { // 定义初始条件 double x0 = 1.0; double t0 = 0.0; // 定义求解 runge_kutta4<double> solver; // 定义时间步长和总时间 double dt = 0.1; double tmax = 10.0; // 定义状态向量 double x = x0; // 求解常微分方程 for(double t=t0; t<tmax; t+=dt) { solver.do_step(harmonic_oscillator, x, t, dt); cout << "t=" << t << ", x=" << x << endl; } return 0; } ``` 上述代码使用了龙格库塔法(runge_kutta4)来求解简谐振动问题。具体实现时,我们需要定义一个函数harmonic_oscillator来描述常微分方程,然后通过调用solver.do_step函数来进行求解。 关于常微分方程初值解法,你可能会有以下几个问题:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值