除法取余解决方法

在实际做题中,我们经常能遇到对除法取余的式子,比如(a/b)%c。碰到这种情况我们有两种方法来解决。

通用的方法

(a/b)mod m = [a mod (m*b) ] / b
证明如下:

在这里插入图片描述

通过逆元求解

首先说一下费马小定理

费马小定理(Fermat’s little theorem)是数论中的一个重要定理,在1636年提出。如果p是一个质数,而整数a不是p的倍数,则有a^(p-1)≡1(mod p)。

然后说一下逆元 如果存在x使得 ax ≡1 mod p,则说x是a的逆元。
   通过上面我们知道a(p-1)≡1(mod p),我们将等式换为a * a(p-2) ≡ 1 mod p,这不就说明了a的逆元就是a(p-2)嘛。
   回到我们的 (a/b) mod c,通过变换的到 a * 1 * b-1 mod c
   我们又知道 bc-1 mod c = 1, 带入上面的到,a* b c-1 * b-1 mod c
   在变换得到a*bc-2 mod c。
   这样就把一个除法的式子转换为了一个乘法的式子,一般情况下这个c都特别的大,所以b的逆元应该使用快速幂进行求解。而且给出的c也都是一个素数。

推荐例题

牛客

解题思路,平方和公式 n * (n+1) * (2 * n+1)/6
对于除6,要使用逆元进行求解

ac代码

#include <iostream>

using namespace std;

typedef long long ll;
const long long MOD = 1000000007;

ll qul(ll a, ll b)
{
    ll sum = 1;

    while (b)
    {
        if (b&1)
            sum = (sum%MOD*a%MOD)%MOD;

        a = (a%MOD*a%MOD)%MOD;
        b>>=1;
    }

    return sum;
}

int main()
{
    ll n;
    ll num = qul(6, MOD-2);

    while (~scanf("%lld", &n))
    {
        printf ("%lld\n", (((n%MOD)*((n+1)%MOD))%MOD*((2*(n%MOD)+1)%MOD)%MOD*num)%MOD);
    }

    return 0;
}

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值