题目地址
题目大意
给n个小木棍,要求你把这些小木棍拼成长度相同木棍,并且长度越小越好
解题思路
首先我们应该确定能够拼成的长度,
下限是n个木棍中最长的长度maxlen,上线就是n个木棍的长度之和sum。
由于题目给的数据并不大,我们可以从maxlen一直遍历到sum,查找到一个符合条件的长度。查找的过程不难看出可以使用深搜来做。
深搜得确定好边界,当n根木棍均用完且凑出来了m个k长度的木棍时,递归结束。如果n个木棍用完也没能拼凑成功,也结束。
还需要注意的是,我们不妨直觉的感受一下,如果有这样几根木棍,5 3 2 1。我们想要凑长度为八的木棍,那我们先拿5和3好还是先拿5 2 1好?虽然无论先以哪种方式拿,问题的答案都是固定的。但是我们更倾向于先拿大的,再取小的,因为小的更加的灵活,能够在后面可选的木棍变少的情况下,更容易应对。所以根据这个思想我们可以先把木棍序列从大到小进行一个排序。并且每次组成一个新木棍时,先取最大的。那么当新组一个木棍的时候,就不能像其它时候那样循环尝试了。而是查找到一个当前没有用过的最大的木棍,以它为搜索的头,重新开启一个深搜。具体请看代码。
还能优化的地方是,相同长度的木棍不要重复搜索。比如当前两个3的木棍,由于排序,他们两个是紧邻的。如果我发现上一个长度为3的木棍并没有用过,那就说明它并不能使用,所以对于现在这个3,我就不去在搜索一遍确定它不能使用了。
参考博客:https://blog.csdn.net/u010700335/article/details/44095171
AC代码
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
int n, l;
bool flag = false, vis[100];
int a[100];
bool cmp(int a, int b)
{
return a > b;
}
void dfs(int len, int step, int location)
{
if (flag)
return;
if (len == 0)
{
int k = 0;
while (vis[k])
k++;
vis[k] = true;
dfs(a[k], step+1, k+1);
vis[k] = false;
return;
}
if (len == l)
{
if (step == n)
flag = true;
else
dfs(0, step, 0);
return;
}
for (int i=location; i<n; i++)
{
if (!vis[i] && len + a[i] <= l)
{
if (!vis[i-1] && a[i-1] == a[i])
continue;
vis[i] = true;
dfs(len+a[i], step+1, i+1);
vis[i] = false;
}
}
}
int main()
{
while (cin >> n && n != 0)
{
int sum = 0;
flag = false;
for (int i=0; i<n; i++)
{
cin >> a[i];
sum+=a[i];
}
sort(a, a+n, cmp);
for (l = a[0]; l<sum; l++)
{
if (sum % l == 0)
{
memset(vis, 0, sizeof(vis));
dfs(0, 0, 0);
if (flag)
break;
}
}
cout << l << endl;
}
return 0;
}