高等概率论 Chapter 6 Construction of a Probability Measure

Chapter 6 Construction of a Probability Measure

南京审计大学统计学研究生第一学期课程,《高等概率论》。

欢迎大家来我的github下载源码呀,https://github.com/Berry-Wen/statistics-note-system

概率测度的构造 adveprobab 2

对于 B \mathcal{B} B { ω } ω ∈ Ω \{\omega\}_{\omega \in \Omega} {ω}ωΩ ,即 B \mathcal{B} B 是单点集组成的事件类

如果概率 P P P 建立在 B \mathcal{B} B 上,这样构造的概率比较好计算,现在的想法是:想通过有限集合或者可数集合,来进行拓展,将概率测度扩展开

即将 P P P 扩展到 A = 2 Ω \mathcal{A}=2^{\Omega} A=2Ω

核心:

f i n i t e ⇒ u n c o u n t a b l e finite \qquad \Rightarrow \qquad uncountable finiteuncountable




  • Assume given Ω \Omega Ω (countable or uncountable) and a σ \sigma σ-algebra A ∈ 2 Ω \mathcal{A} \in 2^{\Omega} A2Ω

  • ( Ω , A ) (\Omega,\mathcal{A}) (Ω,A) is called a measurable space. 构造 P P P

  • Want to construct probability measure on A \mathcal{A} A

    • When Ω \Omega Ω is finite or countable, we have already seen this is simple to do.

    • When Ω \Omega Ω is uncountable, the same technique does not work. 失效

      • Indeed, a “typical” probability P P P will have P ( { ω } ) = 0 P(\{\omega\})=0 P({ω})=0 for all ω \omega ω, and thus the family of all numbers P ( { ω } ) P(\{\omega\}) P({ω}) for ω ∈ Ω \omega \in \Omega ωΩ does not characterize probability P P P in general.

      • 怎么理解上一点?对于不可数集合。。。



  • In many “concrete” situations — that it is often relatively simple to construct a “probability” on an algebra which generates the σ \sigma σ-algebra A \mathcal{A} A , and the problem at hand is then to extend this probability to the σ \sigma σ-algebra itself.

    在由 A \mathcal{A} A 生成的 sigma 代数里面构建一个代数上的概率是相对比较容易的,现在要将其拓展到 sigma 代数里面


  • Suppose: 在一个代数上建立概率 P P P

    • A 0 \mathcal{A}_0 A0 is an algebra and, A = σ ( A 0 ) \mathcal{A}=\sigma(\mathcal{A}_0) A=σ(A0).

    • Given a probability P P P on the algebra A 0 \mathcal{A}_0 A0 : that is, a set function P : A 0 → [ 0 , 1 ] P: \mathcal{A}_0 \to [0,1] P:A0[0,1] satisfying

      • P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1
      • (Countable Additivity) for any sequence { A n } n ≥ 1 ⊂ A 0 \{A_n\}_{n\ge 1} \subset \mathcal{A}_0 {An}n1A0, pairwise disjoint, and such that ∪ n ≥ 1 A n ∈ A 0 \cup_{n\ge 1}A_n \in \mathcal{A}_0 n1AnA0, we have

P ( ∪ n ≥ 1 A n ) = ∑ n = 1 ∞ P ( A n ) P \left( \cup_{n\ge 1} A_n \right) = \sum_{n=1}^{\infty} P(A_n) P(n1An)=n=1P(An)



It might seem natural to use for A \mathcal{A} A, the set of all subsets of Ω \Omega Ω, as we did in the case where Ω \Omega Ω was countable.


We do not do so for the following reason, illustrated by an example: 不可数的不满足

  • Suppose Ω = [ 0 , 1 ] \Omega=[0,1] Ω=[0,1], and define a set function P P P on intervals of the form P ( ( a , b ] ) = b − a P((a,b])=b-a P((a,b])=ba, where 0 ≤ a ≤ b ≤ 1 0\le a\le b \le 1 0ab1

  • It is a natural “probability measure” that assigns the usual length of an interval as its probability.

    概率表示为长度

  • Suppose we want to extend P P P in a unique way to 2 Ω = 2 [ 0 , 1 ] = 2^{\Omega}=2^{[0,1]}= 2Ω=2[0,1]= all subsets of [ 0 , 1 ] [0,1] [0,1] such that

    • P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1
    • P ( ∪ n = 1 ∞ A n ) = ∑ n = 1 ∞ P ( A n ) P( \cup_{n=1}^{ \infty}A_n)= \sum_{n=1}^{\infty} P(A_n) P(n=1An)=n=1P(An) for any sequence of subsets { A n } n ≥ 1 \{A_n\}_{n\ge 1} {An}n1 with A n ∩ A m = ∅ A_n \cap A_m = \emptyset AnAm= for n ≠ m n \neq m n=m
  • One can prove that no such P P P exists! 怎么证明其不存在性?
  • The collection of sets 2 [ 0 , 1 ] 2^{[0,1]} 2[0,1] is simply too big for this to work.

Borel realized that we can however do this on a smaller collection of sets, namely the smallest σ \sigma σ-algebra containing intervals of the form ( a , b ] (a,b] (a,b].




Borel set :

  • the sigma-algebra generated by the open sets \qquad 所有开集生成的 sigma 代数

  • the sigma-algebra generated by the open intervals \quad 所有开区间生成的 sigma 代数

  • the sigma-algebra generated by the ( − ∞ , a ] , a ∈ Q (- \infty , a], a \in \mathbb{Q} (,a],aQ \quad 所有 ( − ∞ , a ] (- \infty,a] (,a] 生成的 sigma 代数

    这三个定义构造的 Borel set 越来越小,事件类越小,构建概率 P P P 越简单


由定理2.1:在 R \mathbb{R} R上的博雷尔集是由 ( − ∞ , a ] (-\infty,a] (,a]这种形式的区间所生成的sigma代数

Proof.

Let C \mathcal{C} C denote all open intervals. Since every open set in R \mathcal{R} R is the countable union of open intervals, we have σ ( C ) = \sigma(\mathcal{C})= σ(C)= the Borel σ − a l g e b r a \sigma-algebra σalgebra of R \mathbb{R} R

Let D \mathcal{D} D denote all intervals of the form ( − ∞ , a ] (- \infty,a] (,a], where a ∈ Q a \in \mathbb{Q} aQ.

Let ( a , b ) ∈ C (a,b) \in \mathcal{C} (a,b)C

Let ( a n ) n ≥ 1 (a_n)_{n \ge 1} (an)n1 be a sequence of rationals decreasing to a

Let ( b n ) n ≥ 1 (b_n)_{n \ge_1} (bn)n1 be a sequence of rationals increasing strictly to b.

Then

( a , b ) = ∪ n = 1 ∞ ( a n , b n ] = ∪ n = 1 ∞ ( ( − ∞ , b n ] ∩ ( − ∞ , a n ] c ) \begin{aligned} (a,b) &= \cup_{n=1}^{ \infty} (a_n, b_n] \\ &= \cup_{n=1}^{ \infty} \left( (- \infty,b_n] \cap (- \infty,a_n]^c \right) \\ \end{aligned} (a,b)=n=1(an,bn]=n=1((,bn](,an]c)

Therefore , C ⊂ σ ( D ) \mathcal{C} \subset \sigma(\mathcal{D}) Cσ(D), where σ ( C ) ⊂ σ ( D ) \sigma(\mathcal{C}) \subset \sigma(\mathcal{D}) σ(C)σ(D)

However, since each element of D \mathcal{D} D is a closed set, it is also a Borel set, and therefore D \mathcal{D} D is contained in the Borel sets B \mathcal{B} B, Thus we have
B = σ ( C ) ⊂ σ ( D ) ⊂ B \mathcal{B} = \sigma(\mathcal{C}) \subset \sigma(\mathcal{D}) \subset \mathcal{B} B=σ(C)σ(D)B

and hence σ ( D ) = B \sigma(\mathcal{D}) = \mathcal{B} σ(D)=B


这个定理给出了更容易验证 B o r e l σ − a l g e b r a Borel \sigma-algebra Borelσalgebra 的一种方法,给出了验证博雷尔集的一个充要条件

这个定理的证明核心在于 $(a,b) =\cup_{n=1}^{ \infty} \left( (- \infty,b_n] \cap (- \infty,a_n]^c \right) \$

需要证明左边的开区间 ( a , b ) (a,b) (a,b)所构成的 sigma 代数 B \mathcal{B} B和右边的 ( − ∞ , a ] (-\infty,a] (,a]这种形式构成的sigma代数 σ ( D ) \sigma(\mathcal{D}) σ(D)是相等的,则需要证明两个包含关系



Theorem 6.1 概率延拓定理(唯一延拓)

Each probability P P P defined on the algebra A 0 \mathcal{A}_0 A0 has a unique extension (also call P P P) on A \mathcal{A} A.

每一个定义在代数 A 0 \mathcal{A_0} A0 上的概率,在 A \mathcal{A} A 上都有唯一的拓展

We will show only the uniqueness. For the existence one can consult any standard text on measure theory.


Definition 6.1

  • A class C \mathcal{C} C of subsets of Ω \Omega Ω is closed under finite intersections C \qquad \mathcal{C} C

    对有限并封闭 (代数满足对有限并封闭)

    • If for when A 1 , A 2 , . . . , A n ∈ C A_1,A_2,...,A_n \in \mathcal{C} A1,A2,...,AnC ,
      then A 1 ∩ A 2 ∩ ⋯ ∩ A n ∈ C A_1 \cap A_2 \cap \cdots \cap A_n \in \mathcal{C} A1A2AnC as well

      (n arbitrary but finite)

  • A class C \mathcal{C} C is closed under increasing limits C \qquad \mathcal{C} C

    对单増并封闭 σ \sigma σ-代数满足,且 σ \sigma σ-代数更小)

    • If wherever A 1 ⊂ A 2 ⊂ ⋯ ⊂ A n ⊂ ⋯ A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots A1A2An is a sequence of events in C \mathcal{C} C, then ∪ n = 1 ∞ A n ∈ C \cup_{n=1}^{ \infty} A_n \in \mathcal{C} n=1AnC as well.
  • A class C \mathcal{C} C is closed under differences C \qquad \mathcal{C} C

    对差封闭 (代数满足对差封闭,但满足对差封闭的不一定是代数)

    • If whenever A , B ∈ C A,B \in \mathcal{C} A,BC with A ⊂ B A \subset B AB, then B − A ∈ C B-A \in \mathcal{C} BAC.


⋆ ⋆ ⋆ ⋆ ⋆ \star\star\star\star\star Monotone Class Theorem 单调类定理

Let C \mathcal{C} C be a class of subsets of Ω \Omega Ω, closed under finite intersections and containing Ω \Omega Ω.

C \mathcal{C} C 满足两个条件:包含 Ω \Omega Ω、对有限交封闭

Let B \mathcal{B} B be the smallest class containing C \mathcal{C} C which is closed under increasing limits and by difference.

B \mathcal{B} B 满足两个条件:包含 C \mathcal{C} C 的最小类、对单増并、差封闭

Then B = σ ( C ) \mathcal{B} = \sigma(C) B=σ(C)




Proof.

Note that

  • The intersection of classed of sets closed under increasing limits and differences is again a class of that type.

一列事件,对单増并封闭,则把之交起来也对单増并封闭

Proof.

题设:

  • 有若干个事件类 A α , α ∈ I \mathcal{A}_{\alpha},\alpha \in \mathcal{I} Aα,αI
  • 对每个 α ∈ I , A α \alpha \in \mathcal{I},\quad \mathcal{A}_{\alpha} αI,Aα 对单増并封闭

推导:

A 1 ⊂ A 2 ⊂ ⋯ A_1 \subset A_2 \subset \cdots A1A2 A i ∈ ∩ α ∈ I A α A_i \in \cap_{\alpha \in I} \mathcal{A}_{\alpha} AiαIAα

对任意固定的 α ∈ I , A i ∈ A α , , i = 1 , 2 , . . . \alpha \in \mathcal{I},\quad A_i \in \mathcal{A}_{\alpha}, \quad ,i=1,2,... αI,AiAα,,i=1,2,...

⋃ i = 1 ∞ A i ∈ A α \bigcup_{i=1}^{ \infty}A_i \in \mathcal{A}_{\alpha} i=1AiAα ,于是 ⋃ i = 1 ∞ A i ∈ ⋂ α ∈ I A α \bigcup_{i=1}^{ \infty} A_i \in \bigcap_{\alpha \in I} \mathcal{A}_{\alpha} i=1AiαIAα (每个都属于 A α \mathcal{A}_{\alpha} Aα ,则属于 A α \mathcal{A}_{\alpha} Aα 的交)

一列事件,对差封闭,则把之交起来也对差封闭

自己证明一下

So, by taking the intersection of all such classed,

  • there always exists a smallest class containing C \mathcal{C} C which is closed under increasing limits and by differences.

    总存在一个最小的类,满足:包含 C \mathcal{C} C ,且对单増并封闭、差封闭

    所有满足(对单増并封闭、差封闭、包含 C \mathcal{C} C )的都交起来,最小

For each set B B B, denote B B \mathcal{B}_{B} BB to be the collection of sets A A A such that A ∈ B A \in \mathcal{B} AB and A ∩ B A \cap B AB, i . e . i.e. i.e.

B B = { A : A ∈ B , A ∩ B ∈ B } \mathcal{B}_{B} = \left\{ A: A \in \mathcal{B}, A \cap B \in \mathcal{B} \right\} BB={A:AB,ABB}

看上去 B B \mathcal{B}_{B} BB B B B 的选择有关,但实际上无关

Given the properties of B \mathcal{B} B, one easily checks that B B \mathcal{B}_{B} BB is closed under increasing limits and by differences.

证明对单调并封闭,即证明: 若 A 1 ⊂ A 2 ⊂ . . . A_1 \subset A_2 \subset ... A1A2... A i ∈ B B A_i \in \mathcal{B}_{B} AiBB ,证明 ∪ i = 1 ∞ A i ∈ B B \cup_{i=1}^{ \infty} A_i \in \mathcal{B}_{B} i=1AiBB

则证明其满足两条:

  • ∪ i = 1 ∞ A i ∈ B \cup_{i=1}^{ \infty} A_i \in \mathcal{B} i=1AiB
  • ( ∪ i = 1 ∞ A i ) B ∈ B (\cup_{i=1}^{ \infty}A_i) B \in \mathcal{B} (i=1Ai)BB

证明第一条: ∪ i = 1 ∞ A i ∈ B \cup_{i=1}^{ \infty} A_i \in \mathcal{B} i=1AiB

∵ B \because \quad \mathcal{B} B 对单増并封闭(由定义)

∴ ∪ i = 1 ∞ A i ∈ B \therefore \quad \cup_{i=1}^{ \infty}A_i \in \mathcal{B} i=1AiB

证明第二条: ( ∪ i = 1 ∞ A i ) B ∈ B (\cup_{i=1}^{ \infty}A_i) B \in \mathcal{B} (i=1Ai)BB

( ∪ i = 1 ∞ A i ) B = ∪ i = 1 ∞ ( A i B ) (\cup_{i=1}^{ \infty}A_i) B = \cup_{i=1}^{\infty} (A_i B) (i=1Ai)B=i=1(AiB) A 1 B ⊂ A 2 B ⊂ . . . A_1 B \subset A_2 B \subset ... A1BA2B...

∪ i = 1 ∞ ( A i B ) ⊂ B \cup_{i=1}^{ \infty}(A_i B) \subset \mathcal{B} i=1(AiB)B (定义)

则说明 ∪ i = 1 ∞ A i ∈ B B \cup_{i=1}^{ \infty} A_i \in \mathcal{B}_{B} i=1AiBB ,即 B B \mathcal{B}_{B} BB 对单増并封闭

仿照这个证明,对差封闭的自己证明一下

Let B ∈ C B \in \mathcal{C} BC; 给定 B ∈ C B \in \mathcal{C} BC;

For each C ∈ C C \in \mathcal{C} CC one has B ∩ C ⊂ C ⊂ B B \cap C \subset \mathcal{C} \subset \mathcal{B} BCCB and C ∈ B C \in \mathcal{B} CB, thus C ∈ B B C \in \mathcal{B}_{B} CBB

Hence C ⊂ B B ⊂ B \mathcal{C} \subset \mathcal{B}_{B} \subset \mathcal{B} CBBB. 后一个是定义

∵ B B \because \mathcal{B}_{B} BB 是包含了 C \mathcal{C} C 的对有限并、差封闭的

∴ B = B B \therefore \mathcal{B}=\mathcal{B}_{B} B=BB (by the properties of B \mathcal{B} B and of B B \mathcal{B}_{B} BB )

说明在 B ∈ C B \in \mathcal{C} BC时是可以证明 B = B B \mathcal{B}=\mathcal{B}_{B} B=BB

下面将其拓展到 B \mathcal{B} B



Now let B ∈ B B \in \mathcal{B} BB.

For each C ∈ C ⊂ B C \in \mathcal{C} \subset \mathcal{B} CCB

由上一条可知,在 B ∈ C B \in \mathcal{C} BC时是可以证明 B = B B \mathcal{B}=\mathcal{B}_{B} B=BB的,则在 C ∈ C C \in \mathcal{C} CC时是可以证明 B = B C \mathcal{B}=\mathcal{B}_{C} B=BC的,则 B ∈ B = B C B \in \mathcal{B}=\mathcal{B}_{C} BB=BC

we have B ∈ B C B \in \mathcal{B}_{C} BBC, and because of the preceding, B ∩ C ∈ B B \cap C \in \mathcal{B} BCB, hence C ∈ B B C \in \mathcal{B}_{B} CBB, whence C ⊂ B B ⊂ B \mathcal{C} \subset \mathcal{B}_{B} \subset \mathcal{B} CBBB, hence B = B B \mathcal{B}=\mathcal{B}_{B} B=BB

B ∈ B C ⇓ 定义 1. B ∈ B 2. B C ∈ B ⇒ C ∈ B C B ∈ B ⇓ 定义 C ∈ B B ⇓ C ⊂ B B ⊂ B B = B B \begin{array}{lll} \begin{array}{lll} B \in \mathcal{B}_{C} \\ \Downarrow \text{定义}\\ 1. B \in \mathcal{B} \\ 2. BC \in \mathcal{B} \\ \end{array} & \Rightarrow & \begin{array}{lll} C \in \mathcal{B} \\ CB \in \mathcal{B} \\ \Downarrow \text{定义}\\ C \in \mathcal{B}_{B} \end{array} & \Downarrow & \\ \mathcal{C} \subset \mathcal{B}_{B} \subset \mathcal{B} \\ \mathcal{B} = \mathcal{B}_{B} \end{array} BBC定义1.BB2.BCBCBBBB=BBCBCBB定义CBB
B B \mathcal{B}_{B} BB B B B 无关,但是 B B B 必须在 B \mathcal{B} B 里面

Since B = B B \mathcal{B}=\mathcal{B}_{B} B=BB for all B ∈ B B \in \mathcal{B} BB, we conclude B \mathcal{B} B is closed by finite intersections.

∵ B B \because \mathcal{B}_{B} BB 对有限并封闭

∀ A , B ∈ B \forall A,B \in \mathcal{B} A,BB

∵ B ∈ B A ∈ B = B B \because B \in \mathcal{B} \qquad A \in \mathcal{B}=\mathcal{B}_{B} BBAB=BB

⇒ A B ∈ B \Rightarrow AB \in \mathcal{B} ABB

B \mathcal{B} B 对有限并封闭

可以由定义推导

Furthermore Ω ∈ B \Omega \in \mathcal{B} ΩB, and B \mathcal{B} B is closed by difference, hence also under complementation.

Since B \mathcal{B} B is closed by increasing limits as well, we conclude B \mathcal{B} B is a σ \sigma σ-algebra, and it is clearly the smallest such containing C \mathcal{C} C.

证明: B \mathcal{B} B σ \sigma σ-代数

缺一个可列并封闭:

证明:

A i ∈ B A_i \in \mathcal{B} AiB

B n = ∪ i = 1 n A i B_n = \cup_{i=1}^{n}A_i Bn=i=1nAi,则 ∪ i = 1 n A i = ∪ i = 1 n B i \cup_{i=1}^{n}A_i = \cup_{i=1}^{n}B_i i=1nAi=i=1nBi ,且 B 1 ⊂ B 2 ⊂ . . . B_1 \subset B_2 \subset ... B1B2...

B n c = ∩ i = 1 n A i c ∈ B B_n^c = \cap_{i=1}^{n}A_i^c \in \mathcal{B} Bnc=i=1nAicB

  • A i ∈ B A_i \in \mathcal{B} AiB
  • A i c ∈ B A_i^c \in \mathcal{B} AicB
  • A i c A_i^c Aic 有限并 ∈ B \in \mathcal{B} B

⇒ B n ∈ B \Rightarrow \quad B_n \in \mathcal{B} BnB

B \mathcal{B} B 对可列并封闭

B \mathcal{B} B σ \sigma σ-代数, B ⊃ C ⇒ B ⊃ σ ( C ) \mathcal{B} \supset \mathcal{C} \qquad \Rightarrow \quad \mathcal{B} \supset \sigma(\mathcal{C}) BCBσ(C)

σ ( C ) ⊃ C \sigma(\mathcal{C}) \supset \mathcal{C} σ(C)C σ ( C ) \sigma(\mathcal{C}) σ(C) 对单増并、差封闭

B \mathcal{B} B 的最小性,可得 σ ( C ) ⊃ B \sigma(\mathcal{C}) \supset \mathcal{B} σ(C)B

B = σ ( C ) \mathcal{B}=\sigma(\mathcal{C}) B=σ(C)

The proof of the uniqueness in Theorem 6.1 is an immediate consequence of the following Corollary 6.1, itself a consequence of the Monotone Class Theorem




Corollary 6.1 推论:概率延拓定理

Let P P P and Q Q Q be two probabilities defined on A \mathcal{A} A

Suppose P P P and Q Q Q agree on a class C ⊂ A \mathcal{C} \subset \mathcal{A} CA which is closed under finite intersections.

If σ ( C ) = A \sigma(\mathcal{C}) = \mathcal{A} σ(C)=A, we have P = Q P=Q P=Q

这个定理说明:两个定义在对交封闭的 C \mathcal{C} C 上相等的概率测度 P , Q P,Q P,Q , 可以将其延拓到 σ ( C ) \sigma(\mathcal{C}) σ(C)

Proof. We can assume w . l . o . g . w.l.o.g. w.l.o.g. that Ω ∈ C \Omega \in \mathcal{C} ΩC , since

  • Ω ∈ A \Omega \in \mathcal{A} ΩA, because A \mathcal{A} A is a σ \sigma σ-algebra
  • P ( Ω ) = Q ( Ω ) = 1 P( \Omega ) = Q( \Omega ) =1 P(Ω)=Q(Ω)=1, because they are both probabilities.

Let

B = { A ∈ A : P ( A ) = Q ( A ) } \mathcal{B} = \left\{ A \in \mathcal{A}:P(A)=Q(A) \right\} B={AA:P(A)=Q(A)}
By the definition of a Probability measure and Theorem 2.3, B \mathcal{B} B is closed by difference and by increasing limits.

Also B \mathcal{B} B contains C \mathcal{C} C by hypothesis.

Therefore since σ ( C ) = A \sigma(\mathcal{C})=\mathcal{A} σ(C)=A, we have B = A \mathcal{B}=\mathcal{A} B=A by the Monotone Class Theorem.


不妨设 Ω ∈ C \Omega \in \mathcal{C} ΩC ( 若不在里面,定义 C ′ = C ∪ { Ω } \mathcal{C}'=\mathcal{C} \cup \left\{ \Omega \right\} C=C{Ω}

B = { A ∈ A : P ( A ) = Q ( A ) } \mathcal{B}= \left\{ A \in \mathcal{A}:P(A)=Q(A) \right\} B={AA:P(A)=Q(A)}

证明: B = A \mathcal{B}=\mathcal{A} B=A ,则在 A \mathcal{A} A P ( A ) = Q ( A ) P(A)=Q(A) P(A)=Q(A)

∵ \because C \mathcal{C} C P ( A ) = Q ( A ) P(A)=Q(A) P(A)=Q(A) ∴ C ⊂ B \quad \therefore \mathcal{C} \subset \mathcal{B} CB

A 1 ⊂ A 2 ⊂ . . . A i ∈ B A_1 \subset A_2 \subset ...\qquad A_i \in \mathcal{B} A1A2...AiB

∪ i = 1 ∞ A i \cup_{i=1}^{ \infty}A_i i=1Ai

P ( ∪ i = 1 ∞ A i ) = lim ⁡ n → ∞ P ( A n ) = lim ⁡ n → ∞ Q ( A n ) = Q ( ∪ i = 1 ∞ A i ) P \left( \cup_{i=1}^{ \infty} A_i \right) = \lim_{n \to \infty} P(A_n) = \lim_{n \to \infty} Q(A_n) = Q \left( \cup_{i=1}^{ \infty} A_i \right) P(i=1Ai)=nlimP(An)=nlimQ(An)=Q(i=1Ai)

∴ ∪ i = 1 ∞ A i ∈ B \therefore \cup_{i=1}^{ \infty} A_i \in \mathcal{B} i=1AiB

对差也一样

B ⊃ C \mathcal{B} \supset \mathcal{C} BC B \mathcal{B} B 对单増并、差封闭

∴ σ ( C ) = A ⊂ B ⊂ A \therefore \quad \sigma(\mathcal{C})=\mathcal{A} \subset \mathcal{B} \subset \mathcal{A} σ(C)=ABA

∴ A = B \therefore \quad \mathcal{A} = \mathcal{B} A=B

Definition 6.2

Let P P P be a probability on A \mathcal{A} A.

A null set (or negligible set) for P P P is a subset A A A of Ω \Omega Ω such that there exists a B ∈ A B \in \mathcal{A} BA satisfying A ⊂ B A \subset B AB and P ( B ) = 0 P(B)=0 P(B)=0

可忽略的集合

A \mathcal{A} A 是一个概率测度

因为 概率一定满足规范性和可列可加性

A A A 不一定在 A \mathcal{A} A

Remark

  • We say that a property holds almost surely ( a . s . a.s. a.s. in short) if it holds outside a negligible set.

  • This notion clearly depends on the probability, so we say sometimes P-almost surely , or P-a.s.

    几乎处处收敛

    ξ n → a . s . ξ ⇔ ∃ A ⊂ B s . t .   B ⊂ A  and  P ( B ) = 0 l i m n → ∞ ξ n ( ω ) = ξ \begin{aligned} \xi_n \to_{a.s.} \xi & \Leftrightarrow \exists A \subset B \\ & \qquad s.t. \ B \subset \mathcal{A} \text{ and } P(B)=0 \\ & \qquad lim_{n \to \infty} \xi_n(\omega) = \xi \end{aligned} ξna.s.ξABs.t. BA and P(B)=0limnξn(ω)=ξ

    r r r 收敛

    ξ n → r ξ ⇔ E ∣ ξ n − ξ ∣ r → 0 n → ∞ \xi_n \to_{r} \xi \Leftrightarrow E |\xi_n - \xi|^{r} \to 0 \quad n \to \infty ξnrξEξnξr0n

Remark

  • The negligible set are not necessarily in A \mathcal{A} A
  • Nevertheless it is natural to say that they have probability zero.
  • In the following theorem, we extend the probability to the σ \sigma σ-algebra which is generated by A \mathcal{A} A and all P P P-negligible sets.

目标:将概率 P P P 延拓到 A ∪ { all P -negligible } \mathcal{A} \cup \left\{ \text{all} P \text{-negligible} \right\} A{allP-negligible}

Theorem 6.4

Let P P P be a probability on A \mathcal{A} A and let N \mathcal{N} N be the class of all P P P-negligible sets.

Then

A ′ = { A ∪ N : A ∈ A , N ∈ N } \mathcal{A}' = \left\{ A \cup N : A \in \mathcal{A}, N \in \mathcal{N} \right\} A={AN:AA,NN}

is a σ \sigma σ-algebra, called the P P P-completion of A \mathcal{A} A

  • A ′ \mathcal{A}' A is the smallest σ \sigma σ-algebra containing A \mathcal{A} A and N \mathcal{N} N

  • P P P extends uniquely as a probability (still denoted by P P P) on A ′ \mathcal{A}' A,

    by setting P ( A ∪ N ) = P ( A ) P(A \cup N)=P(A) P(AN)=P(A) for A ∈ A A \in \mathcal{A} AA and N ∈ N N \in \mathcal{N} NN

Proof.

由 Corollary 6.1 可知,存在 A ∪ N \mathcal{A} \cup\mathcal{N} AN

∀ A ∈ A ∪ N  即  A ∈ A   o r   A ∈ N \forall A \in \mathcal{A} \cup \mathcal{N} \text{ 即 } A \in \mathcal{A} \ or \ A \in \mathcal{N} AAN  AA or AN

下面证明 A ∪ N \mathcal{A} \cup \mathcal{N} AN 对有限交封闭

  1. A ∈ A , B ∈ A ⇒ A B ∈ A ⊂ A ∪ N A \in \mathcal{A}, B \in \mathcal{A} \qquad \Rightarrow AB \in \mathcal{A} \subset \mathcal{A} \cup \mathcal{N} AA,BAABAAN
  2. A ∈ A , B ∈ N A B ∈ N ⊂ A ∪ N A \in \mathcal{A}, B \in \mathcal{N} \qquad AB \in \mathcal{N} \subset \mathcal{A} \cup \mathcal{N} AA,BNABNAN

∵ B ∈ N → ∃ C ∈ A s . t . B ⊂ C   a n d   P ( C ) = 0 ∴ A B ⊂ B ⊂ C ⇒ A B ∈ N \begin{aligned} \because & B \in \mathcal{N} \to \exists C \in \mathcal{A} \quad s.t. \quad B \subset C \ and \ P(C)=0 \\ \therefore & AB \subset B \subset C \\ \Rightarrow & AB \in \mathcal{N} \\ \end{aligned} BNCAs.t.BC and P(C)=0ABBCABN

  1. A ∈ N , B ∈ N ⇒ A B ∈ N ⊂ A ∪ N A \in \mathcal{N}, B \in \mathcal{N} \qquad \Rightarrow AB \in \mathcal{N} \subset \mathcal{A} \cup\mathcal{N} AN,BNABNAN

由 123 说明 A ∪ N \mathcal{A} \cup \mathcal{N} AN 对有限交封闭

证明 A ∪ N ⊂ A ′ \mathcal{A} \cup \mathcal{N} \subset \mathcal{A}' ANA

∀ A ∈ A ∪ N \forall A \in \mathcal{A} \cup \mathcal{N} AAN , 即 A ∈ A   o r   A ∈ N A \in \mathcal{A} \ or \ A \in \mathcal{N} AA or AN

∵ ∅ ∈ A   a n d   ∅ ∈ N ∀ B ∈ A , B = B ∪ ∅ ∈ A ⇒ A ⊂ A ′ ∀ N ∈ N , N = N ∪ ∅ ∈ A ′ ⇒ N ⊂ A ′ } ⇒ A ∪ N ⊂ A ′ \left. \begin{array}{lll} \because \emptyset \in \mathcal{A} \ and \ \emptyset \in \mathcal{N} \\ \forall B \in \mathcal{A} , \quad B = B \cup \emptyset \in \mathcal{A} \Rightarrow \mathcal{A} \subset \mathcal{A}' \\ \forall N \in \mathcal{N},\quad N = N \cup \emptyset \in \mathcal{A}' \Rightarrow \mathcal{N} \subset \mathcal{A}' \end{array} \right\} \Rightarrow \mathcal{A} \cup \mathcal{N} \subset \mathcal{A}' A and NBA,B=BAAANN,N=NANAANA

证明 A ′ = σ ( A ∪ N ) \mathcal{A}'=\sigma(\mathcal{A} \cup \mathcal{N}) A=σ(AN)

Denote σ ( A ∪ N ) = A ′ ′ \sigma(\mathcal{A} \cup \mathcal{N})= \mathcal{A}'' σ(AN)=A

1. A ⊂ A ′   a n d   N ⊂ A ′ 已证 ⇕ A ∪ N ⊂ A ′ ⇒ A ′ ′ ⊂ A ′ 2. ∀ B ∈ A ′ B = A ∪ N , A ∈ A , N ∈ N ∵ A ′ ′  is  σ -algebra  and  A ∈ A ⊂ A ′ ′ , N ∈ A ⊂ A ′ ′ B = A ∪ N ∈ A ′ ′ ⇒ A ′ ⊂ A ′ ′ ⇓ A ′ = A ′ ′ = σ ( A ∪ N ) \begin{array}{c} \hline \begin{array}{lll} \begin{array}{lll} 1. \\ \mathcal{A} \subset \mathcal{A}' \ and \ \mathcal{N} \subset \mathcal{A}' \text{已证}\\ \Updownarrow \\ \mathcal{A} \cup \mathcal{N} \subset \mathcal{A}' \\ \Rightarrow \mathcal{A}'' \subset \mathcal{A}' \end{array} && \begin{array}{lll} 2. \\ \forall B \in \mathcal{A}' \quad B = A \cup N , A \in \mathcal{A}, N \in \mathcal{N} \\ \because \mathcal{A}'' \text{ is $\sigma$-algebra} \\ \text{ and } A \in \mathcal{A} \subset \mathcal{A}'', N \in \mathcal{A} \subset \mathcal{A}'' \\ B = A \cup N \in \mathcal{A}'' \Rightarrow \mathcal{A}' \subset \mathcal{A}'' \end{array} \\ & & \\ \end{array} \\ \hline \Downarrow \\ \mathcal{A}' = \mathcal{A}'' = \sigma(\mathcal{A} \cup\mathcal{N}) \end{array} 1.AA and NA已证ANAAA2.BAB=AN,AA,NNA is σ-algebra and AAA,NAAB=ANAAAA=A=σ(AN)

证明 A ′ \mathcal{A}' A 是一个 σ \sigma σ-algebra

  1. Ω ∈ A ′ Ω = Ω ∪ ∅ , Ω ∈ A , ∅ ∈ N \Omega \in \mathcal{A}' \qquad \Omega=\Omega \cup \emptyset,\quad \Omega \in \mathcal{A}, \emptyset \in \mathcal{N} ΩAΩ=Ω,ΩA,N

  2. B ∈ A ′ B \in \mathcal{A}' BA ,则 ∃ A ∈ A , N ∈ N \exists A \in \mathcal{A}, N \in \mathcal{N} AA,NN

s . t . B = A ∪ N B C = A C ∩ N C = ( A C ∩ C C ) ∪ ( A C ∩ N C ∩ C ) ( A C ∩ C C ) ∈ A ( A C ∩ N C ∩ C ) ⊂ C ∈ N ⇓ B C ∈ A ′ \begin{aligned} s.t. \\ B &= A \cup N \\ B^C &= A^C \cap N^C = (A^C \cap C^C) \cup (A^C \cap N^C \cap C) \\ & (A^C \cap C^C) \in \mathcal{A} \\ & (A^C \cap N^C \cap C) \subset C \in \mathcal{N} \\ \Downarrow \\ B^C & \in \mathcal{A}' \\ \end{aligned} s.t.BBCBC=AN=ACNC=(ACCC)(ACNCC)(ACCC)A(ACNCC)CNA

  1. 可列可加

    B n ∈ A ′ , n = 1 , 2 , . . . B_n \in \mathcal{A}',n=1,2,... BnA,n=1,2,...

    N n ⊂ C n ∈ A , P ( C n ) = 0 N_n \subset C_n \in \mathcal{A},P(C_n)=0 NnCnA,P(Cn)=0

    P ( ∪ n = 1 ∞ C n ) ≤ ∑ n = 1 ∞ P ( C n ) = 0 P( \cup_{n=1}^{ \infty} C_n) \le \sum_{n=1}^{\infty} P(C_n) =0 P(n=1Cn)n=1P(Cn)=0

B n = A n ∪ N n A n ∈ A , N n ∈ N ∪ n = 1 ∞ B n = ( ∪ n = 1 ∞ A n ) ∪ ( ∪ n = 1 ∞ N n ) ∈ A ′ ∪ n = 1 ∞ A n ∈ A ∪ n = 1 ∞ N n ∈ N \begin{aligned} B_n &= A_n \cup N_n \qquad A_n \in \mathcal{A}, N_n \in \mathcal{N} \\ \cup_{n=1}^{ \infty} B_n &= \left( \cup_{n=1}^{ \infty}A_n \right) \cup \left( \cup_{n=1}^{ \infty} N_n \right) \in \mathcal{A}' \\ & \cup_{n=1}^{ \infty} A_n \in \mathcal{A} \\ & \cup_{n=1}^{ \infty} N_n \in \mathcal{N} \\ \end{aligned} Bnn=1Bn=AnNnAnA,NnN=(n=1An)(n=1Nn)An=1AnAn=1NnN

A ′ \mathcal{A}' A 是一个 σ \sigma σ-algebra , A ′ = σ ( A ∪ N ) \mathcal{A}'=\sigma(\mathcal{A} \cup \mathcal{N}) A=σ(AN)

由 corollary 6.1 知, The uniqueness of the extension is straightforward.

现在想知道,若 A \mathcal{A} A 上有不一样的分解,其概率是否会于分解有关?

Suppose now that A 1 ∪ N 1 = A 2 ∪ N 2 A_1 \cup N_1 = A_2 \cup N_2 A1N1=A2N2 with A i ∈ A A_i \in \mathcal{A} AiA and N i ∈ N N_i \in \mathcal{N} NiN

The symmetrical difference A 1 △ A 2 = ( A 1 ∩ A 2 c ) ∪ ( A 1 c ∩ A 2 ) A_1 \triangle A_2 = (A_1 \cap A_2^c ) \cup (A_1^c \cap A_2 ) A1A2=(A1A2c)(A1cA2) is contained in N 1 ∪ N 2 N_1 \cup N_2 N1N2

Proof.

A 1 A 2 c ⊂ ( A 1 ∪ N 1 ) A 2 c = ( A 2 ∪ N 2 ) A 2 c = A 2 A 2 c ∪ N 2 A 2 c = N 2 A 2 c ⊂ N 2 A 1 c A 2 ⊂ A 1 c ( A 2 ∪ N 2 ) = A 1 c ( A 1 ∪ N 1 ) = A 1 c A 1 ∪ A 1 c N 1 = A 1 c N 1 ⊂ N 1 ∴   A 1 A 2 c ∪ A 1 c A 2 ⊂ N 1 ∪ N 2 \begin{aligned} A_1A_2^c & \subset (A_1 \cup N_1)A_2^c = (A_2 \cup N_2 ) A_2^c = A_2 A_2^c \cup N_2A_2^c = N_2 A_2^c \subset N_2 \\ A_1^c A_2 & \subset A_1^c (A_2 \cup N_2) = A_1^c (A_1 \cup N_1 ) = A_1^c A_1 \cup A_1^c N_1 = A_1^c N_1 \subset N_1 \\ \therefore &\ A_1 A_2^c \cup A_1^c A_2 \quad \subset \quad N_1 \cup N_2 \end{aligned} A1A2cA1cA2(A1N1)A2c=(A2N2)A2c=A2A2cN2A2c=N2A2cN2A1c(A2N2)=A1c(A1N1)=A1cA1A1cN1=A1cN1N1 A1A2cA1cA2N1N2

∃ C i ∈ A P ( C i ) = 0 , N i ⊂ C i , i = 1 , 2 , . . . A i ∈ A \exists C_i \in \mathcal{A} \quad P(C_i)=0 ,\quad N_i \subset C_i, \quad i=1,2,... \quad A_i \in \mathcal{A} CiAP(Ci)=0,NiCi,i=1,2,...AiA

A 1 △ A 2 ⊂ N 1 ∪ N 2 ⊂ C 1 ∪ C 2 ⇒ A 1 △ A 2 ∈ N , P ( C 1 ∪ C 2 ) ≤ P ( C 1 ) + P ( C 2 ) = 0 A_1 \triangle A_2 \subset N_1 \cup N_2 \subset C_1 \cup C_2 \quad \Rightarrow \quad A_1 \triangle A_2 \in \mathcal{N}, \quad P(C_1 \cup C_2 ) \le P(C_1)+P(C_2)=0 A1A2N1N2C1C2A1A2N,P(C1C2)P(C1)+P(C2)=0

P ( A 1 ) = P ( A 1 A 2 + A 1 A 2 c ) = P ( A 1 A 2 ) + P ( A 1 A 2 c ) = P ( A 1 A 2 ) A 1 A 2 c ⊂ A 1 △ A 2 ⊂ N 1 ∪ N 2 ⊂ C 1 ∪ C 2 ⇒ P ( A 1 A 2 c ) ≤ P ( C 1 ∪ C 2 ) = 0 P ( A 1 ) = P ( A 1 A 2 ) P ( A 2 ) = P ( A 1 A 2 ) ⇒ P ( A 1 ) = P ( A 2 ) ⇒ Q ( A 1 ∪ N 1 ) = Q ( A 2 ∪ N 2 ) \begin{aligned} P(A_1) &= P(A_1A_2 +A_1A_2^c) \\ &= P(A_1A_2)+P(A_1A_2^c) \\ &= P(A_1A_2) \\ & A_1A_2^c \subset A_1 \triangle A_2 \subset N_1 \cup N_2 \subset C_1 \cup C_2 \quad\Rightarrow P(A_1A_2^c) \le P(C_1 \cup C_2)=0 \\ P(A_1) &= P(A_1A_2) \\ P(A_2)&=P(A_1A_2) \\ &\Rightarrow P(A_1)=P(A_2) \\ &\Rightarrow Q(A_1 \cup N_1) = Q(A_2 \cup N_2) \end{aligned} P(A1)P(A1)P(A2)=P(A1A2+A1A2c)=P(A1A2)+P(A1A2c)=P(A1A2)A1A2cA1A2N1N2C1C2P(A1A2c)P(C1C2)=0=P(A1A2)=P(A1A2)P(A1)=P(A2)Q(A1N1)=Q(A2N2)

则不管怎么分解,延拓的概率都相等

现在证明 Q Q Q 是概率,概率需要验证两条:

  1. Q ( Ω ) = Q ( Ω ∪ ∅ ) = P ( Ω ) = 1 Q(\Omega) = Q (\Omega \cup \emptyset) = P(\Omega)=1 Q(Ω)=Q(Ω)=P(Ω)=1
  2. 假设 B n ∈ A ′ B_n \in \mathcal{A}' BnA B n B_n Bn 两两互斥 n = 1 , 2 , . . . n=1,2,... n=1,2,...

Q ( ∪ i = 1 ∞ B n ) = Q { ∪ i = 1 ∞ ( A n ∪ N n } = Q { ∪ i = 1 ∞ A n ∪ ∪ i = 1 ∞ N n } = P { ∪ i = 1 ∞ A n }   A n  是 B n  的一部分,则  B n  两两互斥得到  A n  两两互斥 = ∑ n = 1 ∞ P { A n } Q ( B n ) = Q ( A n ∪ N n ) = P ( A n ) ∴   Q ( ∪ i = 1 ∞ B n ) = ∑ n = 1 ∞ Q ( B n ) \begin{aligned} Q( \cup_{i=1}^{ \infty} B_n) &= Q \left\{ \cup_{i=1}^{ \infty} (A_n \cup N_n \right\} \\ &= Q \left\{ \cup_{i=1}^{ \infty} A_n \cup \cup_{i=1}^{ \infty} N_n \right\} \\ &= P \left\{ \cup_{i=1}^{ \infty} A_n \right\} \\ & \qquad \text{ $A_n$ 是$B_n$ 的一部分,则 $B_n$ 两两互斥得到 $A_n$ 两两互斥}\\ &= \sum_{n=1}^{\infty} P \left\{ A_n \right\} \\ \\ Q(B_n) &= Q(A_n \cup N_n) = P(A_n) \\ \therefore & \ Q( \cup_{i=1}^{ \infty} B_n ) = \sum_{n=1}^{\infty} Q(B_n) \\ \end{aligned} Q(i=1Bn)Q(Bn)=Q{i=1(AnNn}=Q{i=1Ani=1Nn}=P{i=1An} An Bn 的一部分,则 Bn 两两互斥得到 An 两两互斥=n=1P{An}=Q(AnNn)=P(An) Q(i=1Bn)=n=1Q(Bn)

Q Q Q A ′ \mathcal{A}' A 上的概率测度,仍然记 Q Q Q P P P

定理6.4证明完毕



回顾一下定理6.1以及其证明过程:

定理6.1: 概率 P P P A \mathcal{A} A 上的概率, N \mathcal{N} N 是所有的可忽略集合类

定义 A ′ = { A ∪ N : A ∈ A , N ∈ N } \mathcal{A}'= \left\{ A \cup N: A \in \mathcal{A}, N \in \mathcal{N} \right\} A={AN:AA,NN}

则可以得到:

  • A ′ \mathcal{A}' A 是一个 σ \sigma σ-代数
  • A ′ = σ ( A ∪ N ) \mathcal{A}'=\sigma(\mathcal{A} \cup \mathcal{N}) A=σ(AN)
  • 概率 P P P (原来定义在 A \mathcal{A} A 上)可在 A ′ \mathcal{A}' A 上唯一延拓

定理6.1把概率又往前延拓,现在是可以延拓到一个 σ \sigma σ-代数和一个可忽略集的并集构成的 σ \sigma σ-代数上了。



定理的证明需要证明几步:

  1. A ′ \mathcal{A}' A 是一个 σ \sigma σ-代数 { ∅   Ω 在里面 A 在 A ′ 里面,则  A c 也在 A ′ 里面 对 可 列 并 封 闭 \left\{ \begin{array}{lll} \emptyset \ \Omega \text{在里面} \\ A \text{在} \mathcal{A}' \text{里面,则 } A^c \text{也在} \mathcal{A}' \text{里面} \\ 对可列并封闭 \end{array}\right.  Ω在里面AA里面,则 Ac也在A里面

  2. 证明 A ′ = σ ( A ∪ N ) \mathcal{A}'=\sigma(\mathcal{A } \cup \mathcal{N}) A=σ(AN) ,由两个包含关系可以证明

    其中, 证明 A ∈ N ⊂ A ′ \mathcal{A} \in \mathcal{N} \subset \mathcal{A}' ANA 就是为了证明这一步

  3. 证明概率 P P P 延拓到 A ′ \mathcal{A}' A 上之后(记为 Q Q Q )仍然是一个概率(由概率的定义来证明)

  4. 证明唯一性,延拓之后的概率是唯一的,则仍然可以记为 P P P.

    唯一性的证明由性质6.1可以得到,需要证明

    • A ∪ N \mathcal{A} \cup \mathcal{N} AN 对有限交封闭

    • A ′ = σ ( A ∪ N ) \mathcal{A}'=\sigma(\mathcal{A} \cup \mathcal{N}) A=σ(AN)

    • 概率与分解无关

      性质6.1: 概率 P P P 和 概率 Q Q Q 是定义在 A \mathcal{A} A 上的两个概率,若 P , Q P,Q P,Q C ⊂ A \mathcal{C} \subset \mathcal{A} CA 上相等,并且对有限交封闭,如果 σ ( C ) = A \sigma(\mathcal{C})=\mathcal{A} σ(C)=A ,则 P = Q P=Q P=Q

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值