自己对于反码与补码的理解一直很模糊,借此写一篇文章来梳理一下自己的思绪!
首先,计算机中的数据都是以二进制补码的形式来进行存储的。**那为什么不直接用原码存储呢?**因为对于计算机而言,如果要计算俩个数相减,首先需要比较俩个数绝对值的大小,然后相减,符号取绝对值较大的那一个。完成这一过程,就需要一个比较运算电路和减法运算电路。而通过补码形式的运算只需要一个加法运算电路就可以完成,这样大大简化了电路结构。
补码是如何实现减法运算的呢? 这里涉及到一些数学知识。计算周期性(说说自己的理解),以三位二进制为例,三位二进制的模为8(2的3次方),即逢8就进位,111 -011 = 100, -011 对模8
的补码为101,所以原式可转为 111 + 101 = (1)100,舍弃最高位1(即舍弃进位)。
先来了解一下什么是原码,反码,补码
原码就是用二进制来表示一个数值,其中最高位是符号位,0表示为正数,1则表示为负。
正数的反码,补码都相同
负数的反码,符号位不变,其他数据位取反,负数的补码则是其补码再加上1。
注:此种表示法是有缺陷的,如-128 按照上述规则,则其原码为 1 1000 0000,反码为1 0111 1111
再进行加1,则会出现问题,无法实现进位。其实,-128只有对应的补码1000 0000,其反码,原码都无法用1个字节来表示.数值的补码公式详细可参考数电教材
下面来通过举一些例子来理解计算机处理数据的过程:
![在上图,将数值常量129赋值给char变量a ,char 所能示数的范围是-128~127,129存入进去会产生溢出,最终a变量用%d 输出的数值为-127。 首先常量 129 的原码是 0 1000 0001,补码是0 1000 0001,char 只有一个字节的存储空间,所以低八位数据存入 a 当中,即1000 0001,此时a中存入的是补码,要对其进行输出,所以将补码转化为原码1111 1111 = -127(负数的补码有俩种方法,1 进行逆运算,先将补码减1得到补码,然后数据位取反得到原码 2.直接对补码再次求补)
再以-129为例,其原码为 1 1000 0001 ,补码是1 0111 1111,存入到char 中的数据位0111 1111
再将其转化为原码 0111 111 == 127
unsigned int 型的宽度为四个字节,所能存储数字的范围为0~ 232 -1, a+1值会溢出,a+1的原码为
0x 1 0000 0000 unsigned int 只能接收32位数据(从低位到高位),存入的补码数据为0x 0000 0000 = =0
补充计算机数据存储数据的方式
上文有提到,当数值发生溢出时,计算机保存的是低位,而最高位将会丢失。**那为什么丢失的不是低位呢?**这就与计算机存储数据的方式有关了。
数据存储有两种方式: 大端存储 or 小端存储(Big-Endian or Little-Endian)
大端存储:高位数据存入低位地址
小端存储:低位数据存入低位地址