风车叶片作为风力发电系统的关键部件,长期暴露在复杂恶劣环境中,极易遭受各类损伤。一旦叶片出现损伤,不仅会降低发电效率,还可能引发严重的安全事故,造成设备损坏和人员伤亡。近年来,因风车叶片损伤引发的事故时有发生,给风力发电行业带来巨大损失。传统检测手段,如人工巡检,不仅效率低下,还容易因人为疏忽导致漏检。而基于改进 YOLOv8 的风车叶片损伤检测算法,通过先进的深度学习技术,能够实现对风车叶片损伤的实时、高精度检测。该算法可快速识别叶片表面的裂纹、磨损等各类损伤,为及时维修提供准确依据,有效提升风车运行安全性与稳定性,助力风力发电行业构建更智能、高效的运维体系。
基于改进YOLOv8的风车叶片损伤检测算法
在风力发电领域,确保风车叶片的安全稳定运行是保障发电效率与设备寿命的关键。风车叶片长期暴露于户外恶劣环境,面临强风、暴雨、紫外线侵蚀以及机械疲劳等多重考验,极易出现裂缝、磨损、腐蚀等损伤。及时且精准地检测出这些损伤,对预防叶片断裂、保障发电系统安全运转意义重大。然而,实际检测过程困难重重。风车所处环境复杂,光照强度随时间、天气大幅波动,叶片表面污渍、灰尘积累,再加上无人机采集图像时可能存在的角度偏差与分辨率局限,使得损伤区域在图像中特征微弱,传统检测方法常常陷入漏检、错检的困境。
为攻克这些难题,本章精心构建了一种基于改进 YOLOv8 结合 CBAM 的风车叶片损伤检测算法,并实现了配套检测系统。该算法以 YOLOv8 强大且高效的目标检测框架作为核心支撑,在此基础上巧妙