代码随想录Day13|栈与队列3|大小顶堆-优先队列

文章介绍了两种使用Python实现滑动窗口最大值的算法,一种基于单调队列,另一种优化后使用了双端队列。同时,文章还讨论了如何在O(n)的时间复杂度内找到数组中前K个高频元素,分别使用了排序和堆数据结构的方法。
摘要由CSDN通过智能技术生成

239.滑动窗口最大值

  • 主要思路-单调队列
  • V1 :自己用list写了一个单调队列的思路,但是list的pop(-1)时间复杂度为O(n),刚好卡到限制时间过
  • V2:用内置的deque的双端队列实现双端输入输出
class Solution:
    def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
        mon_queue = []
        ans = []
        idx = 0
        for i in range(k):
            if mon_queue and mon_queue[0]<nums[i]:
                mon_queue = [nums[i]]
            # elif not mon_queue or mon_queue[-1]>=nums[i]:
            #     mon_queue.append(nums[i])
            else:
                while(mon_queue and mon_queue[-1]<nums[i]):
                    mon_queue.pop(-1)
                mon_queue.append(nums[i])
        
        if mon_queue:
            ans.append(mon_queue[0])
        
        for i in range(k,len(nums)):
            if nums[i-k]==mon_queue[0]:
                mon_queue.pop(0)
            while(mon_queue and mon_queue[-1]<nums[i]):
                mon_queue.pop(-1)
            mon_queue.append(nums[i])
            ans.append(mon_queue[0])

        return ans
## V2
from collections import deque
class Myqueue():
    def __init__(self):
        self.queue = deque()
    def pop(self,num):
        if self.queue and num == self.deque[0]:
            self.queue.popleft()
    def push(self,num):
        while self.queue and num>self.queue[-1]:
            self.queue.pop()
        self.queue.append(num)
    def getfront(self):
        return self.queue[0]

class Solution:
    def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
        mon_queue = Myqueue()
        ans = []
        for i in range(k):
            mon_queue.push(nums[i])
        if mon_queue:
            ans.append(mon_queue.getfront())
        for i in range(k,len(nums)):
            mon_queue.pop(nums[i-k])
            mon_queue.push(nums[i])
            ans.append(mon_queue.getfront())
        return ans

347.前 K 个高频元素

-题目要求时间复杂度优于为O(nlogn)

  • Step1:哈希表记录出现的次数
  • Step2:V1:全排序,时间复杂度为O(nlogn),不符合题目要求; V2: 只维护前k个元素,只排序k个
## V1
import collections
class Solution:
    def topKFrequent(self, nums: List[int], k: int) -> List[int]:
        dicts = collections.defaultdict(int)
        for i in nums:
            dicts[i] += 1
        dicts = sorted(dicts.items(),key=lambda d:d[1],reverse = True)
        ans = []
        for i in range(k):
            ans.append(dicts[i][0])
        return ans[:k]
import collections,heapq
class Solution:
    def topKFrequent(self, nums: List[int], k: int) -> List[int]:
        dicts = collections.defaultdict(int)
        for i in nums:
            dicts[i] += 1
            que = []
        for key,freq in dicts.items():
            heapq.heappush(que,(freq,key))
            if len(que)>k:
                heapq.heappop(que)
        ans = []
        for i in range(k):
            ans.append(heapq.heappop(que)[1])
        return ans
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值