给定一个包含n个点(编号为1~n)的无向图,初始时图中没有边。
现在要进行m个操作,操作共有三种:
“C a b”,在点a和点b之间连一条边,a和b可能相等;
“Q1 a b”,询问点a和点b是否在同一个连通块中,a和b可能相等;
“Q2 a”,询问点a所在连通块中点的数量;
输入格式
第一行输入整数n和m。
接下来m行,每行包含一个操作指令,指令为“C a b”,“Q1 a b”或“Q2 a”中的一种。
输出格式
对于每个询问指令”Q1 a b”,如果a和b在同一个连通块中,则输出“Yes”,否则输出“No”。
对于每个询问指令“Q2 a”,输出一个整数表示点a所在连通块中点的数量
每个结果占一行。
数据范围
1≤n,m≤105
输入样例:
5 5
C 1 2
Q1 1 2
Q2 1
C 2 5
Q2 5
输出样例:
Yes
2
3
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 100010;
int n, m;
int p[N], siz[N];
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i ++ )
{
p[i] = i;
siz[i] = 1;
}
while (m -- )
{
string op;
int a, b;
cin >> op;
if (op == "C")
{
cin >> a >> b;
a = find(a), b = find(b);
if (a != b)
{
p[a] = b;
siz[b] += siz[a];
}
}
else if (op == "Q1")
{
cin >> a >> b;
if (find(a) == find(b)) puts("Yes");
else puts("No");
}
else
{
cin >> a;
cout << siz[find(a)] << endl;
}
}
return 0;
}