机器学习-支持向量机

01 支持向量机概述

  • 支持向量机(SupportVectorMachine,SVM)是一类按监督学习(supervisedlearning)方式对数据进行二元分类的广义线性分类器(generalizedlinearclassifier),其决策边界是对学习样本求解的最大边距超平面(maximum-marginhyperplane)。与逻辑回归和神经网络相比,支持向量机,在学习复杂的非线性方程时提供了一种更为清晰,更加强大的方式
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

02 线性可分支持向量机

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

03 线性支持向量机

在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

04 线性不可分支持向量机

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#%% md

# 机器学习练习10 支持向量机


代码修改并注释:黄海广,haiguang2000@wzu.edu.cn 

#%% md

在本练习中,我们将使用支持向量机(SVM)来构建垃圾邮件分类器。 我们将从一些简单的2D数据集开始使用SVM来查看它们的工作原理。 然后,我们将对一组原始电子邮件进行一些预处理工作,并使用SVM在处理的电子邮件上构建分类器,以确定它们是否为垃圾邮件。

#%% md

我们要做的第一件事是看一个简单的二维数据集,看看线性SVM如何对数据集进行不同的C值(类似于线性/逻辑回归中的正则化项)。 

#%%

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb

#%%

import warnings

warnings.simplefilter("ignore")

#%% md

我们将其用散点图表示,其中类标签由符号表示(+表示正类,o表示负类)。

#%%

data1 = pd.read_csv('data/svmdata1.csv')

#%%

data1.head()

#%%

positive = data1[data1['y'].isin([1])]
negative = data1[data1['y'].isin([0])]

fig, ax = plt.subplots(figsize=(12, 8))
ax.scatter(positive['X1'], positive['X2'], s=50, marker='x', label='Positive')
ax.scatter(negative['X1'], negative['X2'], s=50, marker='o', label='Negative')
ax.legend()
plt.show()

#%% md

请注意,还有一个异常的正例在其他样本之外。
这些类仍然是线性分离的,但它非常紧凑。 我们要训练线性支持向量机来学习类边界。 在这个练习中,我们没有从头开始执行SVM的任务,所以我要用scikit-learn。

#%%

from sklearn import svm
svc = svm.LinearSVC(C=1, loss='hinge', max_iter=1000)
svc

#%% md

首先,我们使用 C=1 看下结果如何。

#%%

svc.fit(data1[['X1', 'X2']], data1['y'])
svc.score(data1[['X1', 'X2']], data1['y'])

#%% md

其次,让我们看看如果C的值越大,会发生什么

#%%

svc2 = svm.LinearSVC(C=100, loss='hinge', max_iter=1000)
svc2.fit(data1[['X1', 'X2']], data1['y'])
svc2.score(data1[['X1', 'X2']], data1['y'])

#%% md

这次我们得到了训练数据的完美分类,但是通过增加C的值,我们创建了一个不再适合数据的决策边界。 我们可以通过查看每个类别预测的置信水平来看出这一点,这是该点与超平面距离的函数。

#%%

data1['SVM 1 Confidence'] = svc.decision_function(data1[['X1', 'X2']])

fig, ax = plt.subplots(figsize=(12, 8))
ax.scatter(data1['X1'],
           data1['X2'],
           s=50,
           c=data1['SVM 1 Confidence'],
           cmap='seismic')
ax.set_title('SVM (C=1) Decision Confidence')
plt.show()

#%%

data1['SVM 2 Confidence'] = svc2.decision_function(data1[['X1', 'X2']])

fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(data1['X1'], data1['X2'], s=50, c=data1['SVM 2 Confidence'], cmap='seismic')
ax.set_title('SVM (C=100) Decision Confidence')
plt.show()

#%% md

可以看看靠近边界的点的颜色,区别是有点微妙。 如果您在练习文本中,则会出现绘图,其中决策边界在图上显示为一条线,有助于使差异更清晰。

现在我们将从线性SVM转移到能够使用内核进行非线性分类的SVM。 我们首先负责实现一个高斯核函数。 虽然scikit-learn具有内置的高斯内核,但为了实现更清楚,我们将从头开始实现。

#%%

def gaussian_kernel(x1, x2, sigma):
    return np.exp(-(np.sum((x1 - x2)**2) / (2 * (sigma**2))))

#%%

x1 = np.array([1.0, 2.0, 1.0])
x2 = np.array([0.0, 4.0, -1.0])
sigma = 2

gaussian_kernel(x1, x2, sigma)

#%% md

该结果与练习中的预期值相符。 接下来,我们将检查另一个数据集,这次用非线性决策边界。

#%%

data2 = pd.read_csv('data/svmdata2.csv')

#%%

data2.head()

#%%

positive = data2[data2['y'].isin([1])]
negative = data2[data2['y'].isin([0])]

fig, ax = plt.subplots(figsize=(12, 8))
ax.scatter(positive['X1'], positive['X2'], s=30, marker='x', label='Positive')
ax.scatter(negative['X1'], negative['X2'], s=30, marker='o', label='Negative')
ax.legend()
plt.show()

#%% md

对于该数据集,我们将使用内置的RBF内核构建支持向量机分类器,并检查其对训练数据的准确性。 为了可视化决策边界,这一次我们将根据实例具有负类标签的预测概率来对点做阴影。 从结果可以看出,它们大部分是正确的。

#%%

svc = svm.SVC(C=100, gamma=10, probability=True)
svc

#%%

svc.fit(data2[['X1', 'X2']], data2['y'])
svc.score(data2[['X1', 'X2']], data2['y'])

#%%

data2['Probability'] = svc.predict_proba(data2[['X1', 'X2']])[:, 0]

fig, ax = plt.subplots(figsize=(12, 8))
ax.scatter(data2['X1'], data2['X2'], s=30, c=data2['Probability'], cmap='Reds')
plt.show()

#%% md

对于第三个数据集,我们给出了训练和验证集,并且基于验证集性能为SVM模型找到最优超参数。 虽然我们可以使用scikit-learn的内置网格搜索来做到这一点,但是本着遵循练习的目的,我们将从头开始实现一个简单的网格搜索。

#%%

data3=pd.read_csv('data/svmdata3.csv')
data3val=pd.read_csv('data/svmdata3val.csv')

#%%

X = data3[['X1','X2']]
Xval = data3val[['X1','X2']]
y = data3['y'].ravel()
yval = data3val['yval'].ravel()

#%%

C_values = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100]
gamma_values = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100]

best_score = 0
best_params = {'C': None, 'gamma': None}

for C in C_values:
    for gamma in gamma_values:
        svc = svm.SVC(C=C, gamma=gamma)
        svc.fit(X, y)
        score = svc.score(Xval, yval)

        if score > best_score:
            best_score = score
            best_params['C'] = C
            best_params['gamma'] = gamma

best_score, best_params

#%% md

# 大间隔分类器

#%%

from sklearn.svm import SVC
from sklearn import datasets
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)
iris = datasets.load_iris()
X = iris["data"][:, (2, 3)]  # petal length, petal width
y = iris["target"]

setosa_or_versicolor = (y == 0) | (y == 1)
X = X[setosa_or_versicolor]
y = y[setosa_or_versicolor]

# SVM Classifier model
svm_clf = SVC(kernel="linear", C=float("inf"))
svm_clf.fit(X, y)

#%%

# Bad models
x0 = np.linspace(0, 5.5, 200)
pred_1 = 5 * x0 - 20
pred_2 = x0 - 1.8
pred_3 = 0.1 * x0 + 0.5

#%%

def plot_svc_decision_boundary(svm_clf, xmin, xmax):
    w = svm_clf.coef_[0]
    b = svm_clf.intercept_[0]

    # At the decision boundary, w0*x0 + w1*x1 + b = 0
    # => x1 = -w0/w1 * x0 - b/w1
    x0 = np.linspace(xmin, xmax, 200)
    decision_boundary = -w[0]/w[1] * x0 - b/w[1]

    margin = 1/w[1]
    gutter_up = decision_boundary + margin
    gutter_down = decision_boundary - margin

    svs = svm_clf.support_vectors_
    plt.scatter(svs[:, 0], svs[:, 1], s=180, facecolors='#FFAAAA')
    plt.plot(x0, decision_boundary, "k-", linewidth=2)
    plt.plot(x0, gutter_up, "k--", linewidth=2)
    plt.plot(x0, gutter_down, "k--", linewidth=2)


#%%

plt.figure(figsize=(12, 2.7))

plt.subplot(121)
plt.plot(x0, pred_1, "g--", linewidth=2)
plt.plot(x0, pred_2, "m-", linewidth=2)
plt.plot(x0, pred_3, "r-", linewidth=2)
plt.plot(X[:, 0][y == 1], X[:, 1][y == 1], "bs", label="Iris-Versicolor")
plt.plot(X[:, 0][y == 0], X[:, 1][y == 0], "yo", label="Iris-Setosa")
plt.xlabel("Petal length", fontsize=14)
plt.ylabel("Petal width", fontsize=14)
plt.legend(loc="upper left", fontsize=14)
plt.axis([0, 5.5, 0, 2])

plt.subplot(122)
plot_svc_decision_boundary(svm_clf, 0, 5.5)
plt.plot(X[:, 0][y == 1], X[:, 1][y == 1], "bs")
plt.plot(X[:, 0][y == 0], X[:, 1][y == 0], "yo")
plt.xlabel("Petal length", fontsize=14)
plt.axis([0, 5.5, 0, 2])

plt.show()

#%% md

# 特征缩放的敏感性

#%%

Xs = np.array([[1, 50], [5, 20], [3, 80], [5, 60]]).astype(np.float64)
ys = np.array([0, 0, 1, 1])
svm_clf = SVC(kernel="linear", C=100)
svm_clf.fit(Xs, ys)

plt.figure(figsize=(12, 3.2))
plt.subplot(121)
plt.plot(Xs[:, 0][ys == 1], Xs[:, 1][ys == 1], "bo")
plt.plot(Xs[:, 0][ys == 0], Xs[:, 1][ys == 0], "ms")
plot_svc_decision_boundary(svm_clf, 0, 6)
plt.xlabel("$x_0$", fontsize=20)
plt.ylabel("$x_1$  ", fontsize=20, rotation=0)
plt.title("Unscaled", fontsize=16)
plt.axis([0, 6, 0, 90])

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_scaled = scaler.fit_transform(Xs)
svm_clf.fit(X_scaled, ys)

plt.subplot(122)
plt.plot(X_scaled[:, 0][ys == 1], X_scaled[:, 1][ys == 1], "bo")
plt.plot(X_scaled[:, 0][ys == 0], X_scaled[:, 1][ys == 0], "ms")
plot_svc_decision_boundary(svm_clf, -2, 2)
plt.xlabel("$x_0$", fontsize=20)
plt.title("Scaled", fontsize=16)
plt.axis([-2, 2, -2, 2])
plt.show()

#%% md

# 硬间隔和软间隔分类

#%%

X_outliers = np.array([[3.4, 1.3], [3.2, 0.8]])
y_outliers = np.array([0, 0])
Xo1 = np.concatenate([X, X_outliers[:1]], axis=0)
yo1 = np.concatenate([y, y_outliers[:1]], axis=0)
Xo2 = np.concatenate([X, X_outliers[1:]], axis=0)
yo2 = np.concatenate([y, y_outliers[1:]], axis=0)

svm_clf2 = SVC(kernel="linear", C=10**9)
svm_clf2.fit(Xo2, yo2)

plt.figure(figsize=(12, 2.7))

plt.subplot(121)
plt.plot(Xo1[:, 0][yo1 == 1], Xo1[:, 1][yo1 == 1], "bs")
plt.plot(Xo1[:, 0][yo1 == 0], Xo1[:, 1][yo1 == 0], "yo")
plt.text(0.3, 1.0, "Impossible!", fontsize=24, color="red")
plt.xlabel("Petal length", fontsize=14)
plt.ylabel("Petal width", fontsize=14)
plt.annotate(
    "Outlier",
    xy=(X_outliers[0][0], X_outliers[0][1]),
    xytext=(2.5, 1.7),
    ha="center",
    arrowprops=dict(facecolor='black', shrink=0.1),
    fontsize=16,
)
plt.axis([0, 5.5, 0, 2])

plt.subplot(122)
plt.plot(Xo2[:, 0][yo2 == 1], Xo2[:, 1][yo2 == 1], "bs")
plt.plot(Xo2[:, 0][yo2 == 0], Xo2[:, 1][yo2 == 0], "yo")
plot_svc_decision_boundary(svm_clf2, 0, 5.5)
plt.xlabel("Petal length", fontsize=14)
plt.annotate(
    "Outlier",
    xy=(X_outliers[1][0], X_outliers[1][1]),
    xytext=(3.2, 0.08),
    ha="center",
    arrowprops=dict(facecolor='black', shrink=0.1),
    fontsize=16,
)
plt.axis([0, 5.5, 0, 2])

plt.show()

#%%

from sklearn.pipeline import Pipeline

#%%

from sklearn.datasets import make_moons

X, y = make_moons(n_samples=100, noise=0.15, random_state=42)

#%%

def plot_predictions(clf, axes):
    x0s = np.linspace(axes[0], axes[1], 100)
    x1s = np.linspace(axes[2], axes[3], 100)
    x0, x1 = np.meshgrid(x0s, x1s)
    X = np.c_[x0.ravel(), x1.ravel()]
    y_pred = clf.predict(X).reshape(x0.shape)
    y_decision = clf.decision_function(X).reshape(x0.shape)
    plt.contourf(x0, x1, y_pred, cmap=plt.cm.brg, alpha=0.2)
    plt.contourf(x0, x1, y_decision, cmap=plt.cm.brg, alpha=0.1)

#%%

def plot_dataset(X, y, axes):
    plt.plot(X[:, 0][y==0], X[:, 1][y==0], "bs")
    plt.plot(X[:, 0][y==1], X[:, 1][y==1], "g^")
    plt.axis(axes)
    plt.grid(True, which='both')
    plt.xlabel(r"$x_1$", fontsize=20)
    plt.ylabel(r"$x_2$", fontsize=20, rotation=0)

#%%

from sklearn.svm import SVC

gamma1, gamma2 = 0.1, 5
C1, C2 = 0.001, 1000
hyperparams = (gamma1, C1), (gamma1, C2), (gamma2, C1), (gamma2, C2)

svm_clfs = []
for gamma, C in hyperparams:
    rbf_kernel_svm_clf = Pipeline([("scaler", StandardScaler()),
                                   ("svm_clf",
                                    SVC(kernel="rbf", gamma=gamma, C=C))])
    rbf_kernel_svm_clf.fit(X, y)
    svm_clfs.append(rbf_kernel_svm_clf)

plt.figure(figsize=(12, 7))

for i, svm_clf in enumerate(svm_clfs):
    plt.subplot(221 + i)
    plot_predictions(svm_clf, [-1.5, 2.5, -1, 1.5])
    plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])
    gamma, C = hyperparams[i]
    plt.title(r"$\gamma = {}, C = {}$".format(gamma, C), fontsize=12)

plt.show()

#%% md

# svm推导

#%% md

----
分离超平面:$w^Tx+b=0$

点到直线距离:$r=\frac{|w^Tx+b|}{||w||_2}$

$||w||_2$为2-范数:$||w||_2=\sqrt[2]{\sum^m_{i=1}w_i^2}$

直线为超平面,样本可表示为:

$w^Tx+b\ \geq+1$

$w^Tx+b\ \leq-1$

#### margin:

**函数间隔**:$label(w^Tx+b)\ or\ y_i(w^Tx+b)$

**几何间隔**:$r=\frac{label(w^Tx+b)}{||w||_2}$,当数据被正确分类时,几何间隔就是点到超平面的距离

为了求几何间隔最大,SVM基本问题可以转化为求解:($\frac{r^*}{||w||}$为几何间隔,(${r^*}$为函数间隔)

$$\max\ \frac{r^*}{||w||}$$

$$(subject\ to)\ y_i({w^T}x_i+{b})\geq {r^*},\ i=1,2,..,m$$

分类点几何间隔最大,同时被正确分类。但这个方程并非凸函数求解,所以要先①将方程转化为凸函数,②用拉格朗日乘子法和KKT条件求解对偶问题。

①转化为凸函数:

先令${r^*}=1$,方便计算(参照衡量,不影响评价结果)

$$\max\ \frac{1}{||w||}$$

$$s.t.\ y_i({w^T}x_i+{b})\geq {1},\ i=1,2,..,m$$

再将$\max\ \frac{1}{||w||}$转化成$\min\ \frac{1}{2}||w||^2$求解凸函数,1/2是为了求导之后方便计算。

$$\min\ \frac{1}{2}||w||^2$$

$$s.t.\ y_i(w^Tx_i+b)\geq 1,\ i=1,2,..,m$$

②用拉格朗日乘子法和KKT条件求解最优值:

$$\min\ \frac{1}{2}||w||^2$$

$$s.t.\ -y_i(w^Tx_i+b)+1\leq 0,\ i=1,2,..,m$$

整合成:

$$L(w, b, \alpha) = \frac{1}{2}||w||^2+\sum^m_{i=1}\alpha_i(-y_i(w^Tx_i+b)+1)$$

推导:$\min\ f(x)=\min \max\ L(w, b, \alpha)\geq \max \min\ L(w, b, \alpha)$

根据KKT条件:

$$\frac{\partial }{\partial w}L(w, b, \alpha)=w-\sum\alpha_iy_ix_i=0,\ w=\sum\alpha_iy_ix_i$$

$$\frac{\partial }{\partial b}L(w, b, \alpha)=\sum\alpha_iy_i=0$$

带入$ L(w, b, \alpha)$

$\min\  L(w, b, \alpha)=\frac{1}{2}||w||^2+\sum^m_{i=1}\alpha_i(-y_i(w^Tx_i+b)+1)$

$\qquad\qquad\qquad=\frac{1}{2}w^Tw-\sum^m_{i=1}\alpha_iy_iw^Tx_i-b\sum^m_{i=1}\alpha_iy_i+\sum^m_{i=1}\alpha_i$

$\qquad\qquad\qquad=\frac{1}{2}w^T\sum\alpha_iy_ix_i-\sum^m_{i=1}\alpha_iy_iw^Tx_i+\sum^m_{i=1}\alpha_i$

$\qquad\qquad\qquad=\sum^m_{i=1}\alpha_i-\frac{1}{2}\sum^m_{i=1}\alpha_iy_iw^Tx_i$

$\qquad\qquad\qquad=\sum^m_{i=1}\alpha_i-\frac{1}{2}\sum^m_{i,j=1}\alpha_i\alpha_jy_iy_j(x_ix_j)$

再把max问题转成min问题:

$\max\ \sum^m_{i=1}\alpha_i-\frac{1}{2}\sum^m_{i,j=1}\alpha_i\alpha_jy_iy_j(x_ix_j)=\min \frac{1}{2}\sum^m_{i,j=1}\alpha_i\alpha_jy_iy_j(x_ix_j)-\sum^m_{i=1}\alpha_i$

$s.t.\ \sum^m_{i=1}\alpha_iy_i=0,$

$ \alpha_i \geq 0,i=1,2,...,m$

以上为SVM对偶问题的对偶形式

-----
#### kernel

在低维空间计算获得高维空间的计算结果,也就是说计算结果满足高维(满足高维,才能说明高维下线性可分)。

#### soft margin & slack variable

引入松弛变量$\xi\geq0$,对应数据点允许偏离的functional margin 的量。

目标函数:$\min\ \frac{1}{2}||w||^2+C\sum\xi_i\qquad s.t.\ y_i(w^Tx_i+b)\geq1-\xi_i$ 

对偶问题:

$$\max\ \sum^m_{i=1}\alpha_i-\frac{1}{2}\sum^m_{i,j=1}\alpha_i\alpha_jy_iy_j(x_ix_j)=\min \frac{1}{2}\sum^m_{i,j=1}\alpha_i\alpha_jy_iy_j(x_ix_j)-\sum^m_{i=1}\alpha_i$$

$$s.t.\ C\geq\alpha_i \geq 0,i=1,2,...,m\quad \sum^m_{i=1}\alpha_iy_i=0,$$

-----

#### Sequential Minimal Optimization

首先定义特征到结果的输出函数:$u=w^Tx+b$.

因为$w=\sum\alpha_iy_ix_i$

有$u=\sum y_i\alpha_iK(x_i, x)-b$


----

$\max \sum^m_{i=1}\alpha_i-\frac{1}{2}\sum^m_{i=1}\sum^m_{j=1}\alpha_i\alpha_jy_iy_j<\phi(x_i)^T,\phi(x_j)>$

$s.t.\ \sum^m_{i=1}\alpha_iy_i=0,$

$ \alpha_i \geq 0,i=1,2,...,m$

#%%

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import  train_test_split
import matplotlib.pyplot as plt
%matplotlib inline

#%%

# data
def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, [0, 1, -1]])
    for i in range(len(data)):
        if data[i,-1] == 0:
            data[i,-1] = -1
    # print(data)
    return data[:,:2], data[:,-1]

#%%

X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)

#%%

plt.scatter(X[:50,0],X[:50,1], label='0')
plt.scatter(X[50:,0],X[50:,1], label='1')
plt.legend()

#%%

class SVM:
    def __init__(self, max_iter=100, kernel='linear'):
        self.max_iter = max_iter
        self._kernel = kernel

    def init_args(self, features, labels):
        self.m, self.n = features.shape
        self.X = features
        self.Y = labels
        self.b = 0.0

        # 将Ei保存在一个列表里
        self.alpha = np.ones(self.m)
        self.E = [self._E(i) for i in range(self.m)]
        # 松弛变量
        self.C = 1.0

    def _KKT(self, i):
        y_g = self._g(i) * self.Y[i]
        if self.alpha[i] == 0:
            return y_g >= 1
        elif 0 < self.alpha[i] < self.C:
            return y_g == 1
        else:
            return y_g <= 1

    # g(x)预测值,输入xi(X[i])
    def _g(self, i):
        r = self.b
        for j in range(self.m):
            r += self.alpha[j] * self.Y[j] * self.kernel(self.X[i], self.X[j])
        return r

    # 核函数
    def kernel(self, x1, x2):
        if self._kernel == 'linear':
            return sum([x1[k] * x2[k] for k in range(self.n)])
        elif self._kernel == 'poly':
            return (sum([x1[k] * x2[k] for k in range(self.n)]) + 1)**2

        return 0

    # E(x)为g(x)对输入x的预测值和y的差
    def _E(self, i):
        return self._g(i) - self.Y[i]

    def _init_alpha(self):
        # 外层循环首先遍历所有满足0<a<C的样本点,检验是否满足KKT
        index_list = [i for i in range(self.m) if 0 < self.alpha[i] < self.C]
        # 否则遍历整个训练集
        non_satisfy_list = [i for i in range(self.m) if i not in index_list]
        index_list.extend(non_satisfy_list)

        for i in index_list:
            if self._KKT(i):
                continue

            E1 = self.E[i]
            # 如果E2是+,选择最小的;如果E2是负的,选择最大的
            if E1 >= 0:
                j = min(range(self.m), key=lambda x: self.E[x])
            else:
                j = max(range(self.m), key=lambda x: self.E[x])
            return i, j

    def _compare(self, _alpha, L, H):
        if _alpha > H:
            return H
        elif _alpha < L:
            return L
        else:
            return _alpha

    def fit(self, features, labels):
        self.init_args(features, labels)

        for t in range(self.max_iter):
            # train
            i1, i2 = self._init_alpha()

            # 边界
            if self.Y[i1] == self.Y[i2]:
                L = max(0, self.alpha[i1] + self.alpha[i2] - self.C)
                H = min(self.C, self.alpha[i1] + self.alpha[i2])
            else:
                L = max(0, self.alpha[i2] - self.alpha[i1])
                H = min(self.C, self.C + self.alpha[i2] - self.alpha[i1])

            E1 = self.E[i1]
            E2 = self.E[i2]
            # eta=K11+K22-2K12
            eta = self.kernel(self.X[i1], self.X[i1]) + self.kernel(
                self.X[i2],
                self.X[i2]) - 2 * self.kernel(self.X[i1], self.X[i2])
            if eta <= 0:
                # print('eta <= 0')
                continue

            alpha2_new_unc = self.alpha[i2] + self.Y[i2] * (
                E1 - E2) / eta  #此处有修改,根据书上应该是E1 - E2,书上130-131页
            alpha2_new = self._compare(alpha2_new_unc, L, H)

            alpha1_new = self.alpha[i1] + self.Y[i1] * self.Y[i2] * (
                self.alpha[i2] - alpha2_new)

            b1_new = -E1 - self.Y[i1] * self.kernel(self.X[i1], self.X[i1]) * (
                alpha1_new - self.alpha[i1]) - self.Y[i2] * self.kernel(
                    self.X[i2],
                    self.X[i1]) * (alpha2_new - self.alpha[i2]) + self.b
            b2_new = -E2 - self.Y[i1] * self.kernel(self.X[i1], self.X[i2]) * (
                alpha1_new - self.alpha[i1]) - self.Y[i2] * self.kernel(
                    self.X[i2],
                    self.X[i2]) * (alpha2_new - self.alpha[i2]) + self.b

            if 0 < alpha1_new < self.C:
                b_new = b1_new
            elif 0 < alpha2_new < self.C:
                b_new = b2_new
            else:
                # 选择中点
                b_new = (b1_new + b2_new) / 2

            # 更新参数
            self.alpha[i1] = alpha1_new
            self.alpha[i2] = alpha2_new
            self.b = b_new

            self.E[i1] = self._E(i1)
            self.E[i2] = self._E(i2)
        return 'train done!'

    def predict(self, data):
        r = self.b
        for i in range(self.m):
            r += self.alpha[i] * self.Y[i] * self.kernel(data, self.X[i])

        return 1 if r > 0 else -1

    def score(self, X_test, y_test):
        right_count = 0
        for i in range(len(X_test)):
            result = self.predict(X_test[i])
            if result == y_test[i]:
                right_count += 1
        return right_count / len(X_test)

    def _weight(self):
        # linear model
        yx = self.Y.reshape(-1, 1) * self.X
        self.w = np.dot(yx.T, self.alpha)
        return self.w

#%%

svm = SVM(max_iter=100)
svm.fit(X_train, y_train)

#%%

svm.score(X_test, y_test)

#%% md

## 参考
- Prof. Andrew Ng. Machine Learning. Stanford University
- 李航,《统计学习方法》,清华大学出版社

#%%



  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值