Angular项目:global Angular与local Angular版本不一致

当Angular项目运行ng serve时遇到版本不一致警告,可通过两种方案解决:1) 将本地版本更新至全局版本;2) 将全局版本更新至本地版本。涉及操作包括卸载、清除缓存、安装指定版本和更新依赖。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

现象

angular项目,执行 ng serve 指令后出现如下警告

Your global Angular CLI version (7.1.3) is greater than your local
version (1.4.9). The local Angular CLI version is used.

To disable this warning use "ng config -g cli.warnings.versionMismatch false"
下面的代码是干什么用的,请生成说明注释,: 【import rospy, math from teb_local_planner.msg import FeedbackMsg, TrajectoryMsg, TrajectoryPointMsg from geometry_msgs.msg import PolygonStamped, Point32, Quaternion from tf.transformations import euler_from_quaternion import numpy as np import scipy.io as sio import time def feedback_callback(data): global got_data if not data.trajectories: # empty trajectory = [] return if got_data: return got_data = True # copy trajectory trajectories = [] for traj in data.trajectories: trajectory = [] # # store as struct and cell array # for point in traj.trajectory: # (roll,pitch,yaw) = euler_from_quaternion([point.pose.orientation.x,point.pose.orientation.y,point.pose.orientation.z,point.pose.orientation.w]) # pose = {'x': point.pose.position.x, 'y': point.pose.position.y, 'theta': yaw} # velocity = {'v': point.velocity.linear.x, 'omega': point.velocity.angular.z} # time_from_start = point.time_from_start.to_sec() # trajectory.append({'pose': pose, 'velocity': velocity, 'time_from_start': time_from_start}) # store as all-in-one mat arr = np.zeros([6, len(traj.trajectory)], dtype='double'); # x, y, theta, v, omega, t for index, point in enumerate(traj.trajectory): arr[0,index] = point.pose.position.x arr[1,index] = point.pose.position.y (roll,pitch,yaw) = euler_from_quaternion([point.pose.orientation.x,point.pose.orientation.y,point.pose.orientation.z,point.pose.orientation.w]) arr[2,index] = yaw arr[3,index] = point.velocity.linear.x arr[4,index] = point.velocity.angular.z arr[5,index] = point.time_from_start.to_sec() # trajectories.append({'raw': trajectory, 'mat': arr}) trajectories.append({'data': arr, 'legend': ['x','y','theta','v','omega','t']}) # copy obstacles obstacles = [] for obst_id, obst in enumerate(data.obstacle_msg.obstacles): #polygon = [] #for point in obst.polygon.points: # polygon.append({'x': point.x, 'y': point.y, 'z': point.z}) obst_arr = np.zeros([4, len(obst.polygon.points)], dtype='double'); # x, y for index, point in enumerate(obst.polygon.points): obst_arr[0, index] = point.x obst_arr[1, index] = point.y obst_arr[2, index] = data.obstacle_msg.velocities[obst_id].twist.linear.x obst_arr[3, index] = data.obstacle_msg.velocities[obst_id].twist.linear.y #obstacles.append(polygon) obstacles.append({'data': obst_arr, 'legend': ['x','y', 'v_x', 'v_y']}) # create main struct: mat = {'selected_trajectory_idx': data.selected_trajectory_idx, 'trajectories': trajectories, 'obstacles': obstacles} timestr = time.strftime("%Y%m%d_%H%M%S") filename = '/home/albers/MasterThesis/Matlab/Homotopie/test_optim_node/' + 'teb_data_' + timestr + '.mat' rospy.loginfo("Saving mat-file '%s'.", filename) sio.savemat(filename, mat) def feedback_exporter(): global got_data rospy.init_node("export_to_mat", anonymous=True) topic_name = "/test_optim_node/teb_feedback" # define feedback topic here! rospy.Subscriber(topic_name, FeedbackMsg, feedback_callback, queue_size = 1) rospy.loginfo("Waiting for feedback message on topic %s.", topic_name) r = rospy.Rate(2) # define rate here while not rospy.is_shutdown(): if got_data: rospy.loginfo("Data export completed.") return r.sleep() if __name__ == '__main__': try: global got_data got_data = False feedback_exporter() except rospy.ROSInterruptException: pass】
最新发布
03-15
<think>嗯,我现在需要理解用户提供的这段Python代码的作用,并生成相应的说明注释。首先,我应该通读一遍代码,看看它导入的库和主要结构。 代码开头导入了rospy、math,还有一些ROS相关的消息类型,比如FeedbackMsg、TrajectoryMsg,以及geometry_msgs和tf.transformations里的函数。另外还用了numpy、scipy.io和time。看起来这可能是一个ROS节点,用于处理机器人相关的数据。 接下来定义了一个全局变量got_data,然后在feedback_callback函数里处理数据。这个回调函数应该是订阅某个ROS话题后的处理函数。函数里检查data.trajectories是否为空,如果为空就返回。然后检查是否已经获取过数据,如果是的话也直接返回,否则设置got_data为True,防止重复处理。 然后,代码开始处理轨迹数据。这里有两种存储方式,其中一种是注释掉的,可能是将每个轨迹点存储为结构体和单元格数组,但后来被改为使用numpy数组arr来存储x、y、theta、v、omega、t这些参数。这说明代码可能将轨迹数据转换为矩阵形式,方便后续处理或保存。 处理完轨迹后,代码处理障碍物数据,同样用numpy数组存储障碍物的位置和速度信息。最后,将这些数据组合成一个主结构体mat,并保存为.mat文件,路径是用户指定的目录,文件名包含时间戳。使用scipy.io的savemat函数保存,这说明数据将被用于MATLAB分析,因为.mat是MATLAB的数据格式。 然后看feedback_exporter函数,它初始化ROS节点,订阅指定的反馈话题,循环等待直到收到数据或节点关闭。主函数里设置got_data为False,并调用feedback_exporter。 整体来看,这个代码的作用是订阅ROS中的TEB局部规划器的反馈信息,将轨迹和障碍物信息提取出来,转换成MATLAB可读的格式保存,方便后续分析。用户可能是想在MATLAB中处理或可视化TEB规划器的输出,比如轨迹优化结果、障碍物运动等。需要确认代码中的路径是否正确,以及话题名称是否匹配实际发布的。 可能的注意事项包括:需要确保ROS环境配置正确,相关消息类型已安装,以及写入权限到指定目录。此外,回调函数中的全局变量got_data用于控制只保存一次数据,可能需要根据需求调整是否持续监听。</think>以下是对代码功能的详细说明及逐行注释: ```python ''' ROS节点:TEB局部路径规划器数据导出工具 功能:订阅TEB规划器的反馈信息,将轨迹和障碍物数据转换为MATLAB格式存储 典型应用场景:路径规划算法分析、轨迹可视化、障碍物运动分析 ''' # 导入依赖库 import rospy, math # ROS Python接口 from teb_local_planner.msg import FeedbackMsg, TrajectoryMsg, TrajectoryPointMsg # TEB消息类型 from geometry_msgs.msg import PolygonStamped, Point32, Quaternion # 几何消息类型 from tf.transformations import euler_from_quaternion # 坐标变换工具 import numpy as np # 数值计算库 import scipy.io as sio # MATLAB文件读写 import time # 时间处理 # 反馈消息回调函数 def feedback_callback(data): global got_data # 全局标志位,用于控制数据保存 # 空轨迹检查 if not data.trajectories: trajectory = [] return # 避免重复处理 if got_data: return got_data = True # 设置数据获取标志 # ========== 处理轨迹数据 ========== trajectories = [] for traj in data.trajectories: # 创建6xN的numpy数组:[x, y, theta, v, omega, t] arr = np.zeros([6, len(traj.trajectory)], dtype='double') # 遍历轨迹点填充数据 for index, point in enumerate(traj.trajectory): # 位置信息 arr[0,index] = point.pose.position.x arr[1,index] = point.pose.position.y # 姿态转欧拉角(仅取yaw) quat = [ point.pose.orientation.x, point.pose.orientation.y, point.pose.orientation.z, point.pose.orientation.w ] (_, _, yaw) = euler_from_quaternion(quat) arr[2,index] = yaw # 速度信息 arr[3,index] = point.velocity.linear.x # 线速度 arr[4,index] = point.velocity.angular.z # 角速度 # 时间戳(转换为秒) arr[5,index] = point.time_from_start.to_sec() # 存储轨迹数据及列说明 trajectories.append({ 'data': arr, 'legend': ['x','y','theta','v','omega','t'] }) # ========== 处理障碍物数据 ========== obstacles = [] for obst_id, obst in enumerate(data.obstacle_msg.obstacles): # 创建4xN数组:[x, y, v_x, v_y] obst_arr = np.zeros([4, len(obst.polygon.points)], dtype='double') # 填充障碍物数据 for index, point in enumerate(obst.polygon.points): obst_arr[0, index] = point.x # X坐标 obst_arr[1, index] = point.y # Y坐标 # 障碍物速度(从对应速度消息中获取) obst_arr[2, index] = data.obstacle_msg.velocities[obst_id].twist.linear.x obst_arr[3, index] = data.obstacle_msg.velocities[obst_id].twist.linear.y obstacles.append({ 'data': obst_arr, 'legend': ['x','y', 'v_x', 'v_y'] }) # ========== 构建数据结构并保存 ========== mat = { 'selected_trajectory_idx': data.selected_trajectory_idx, # 选择的轨迹索引 'trajectories': trajectories, # 所有候选轨迹 'obstacles': obstacles # 障碍物信息 } # 生成带时间戳的文件名 timestr = time.strftime("%Y%m%d_%H%M%S") filename = '/home/albers/MasterThesis/Matlab/Homotopie/test_optim_node/' + 'teb_data_' + timestr + '.mat' # 保存为MATLAB格式 rospy.loginfo("Saving mat-file '%s'.", filename) sio.savemat(filename, mat) # ========== ROS节点主函数 ========== def feedback_exporter(): global got_data rospy.init_node("export_to_mat", anonymous=True) # 初始化ROS节点 # 定义订阅参数 topic_name = "/test_optim_node/teb_feedback" # 反馈话题名称 rospy.Subscriber(topic_name, FeedbackMsg, feedback_callback, queue_size=1) rospy.loginfo("Waiting for feedback message on topic %s.", topic_name) # 设置轮询频率(2Hz) r = rospy.Rate(2) while not rospy.is_shutdown(): # 数据保存完成后退出 if got_data: rospy.loginfo("Data export completed.") return r.sleep() # ========== 程序入口 ========== if __name__ == '__main__': try: global got_data got_data = False # 初始化数据获取标志 feedback_exporter() except rospy.ROSInterruptException: pass ``` 主要数据流向说明: $$ \text{ROS反馈数据} \rightarrow \text{数据解析} \rightarrow \text{结构化存储} \rightarrow \text{MATLAB格式文件} $$ 使用注意事项: 1. 文件存储路径需要写入权限 2. 依赖`teb_local_planner`ROS包 3. 需要MATLAB环境进行后续数据分析 4. 数据仅保存一次(收到第一条有效消息后退出)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值