COCO数据集

官网地址:http://cocodataset.org/#download

COCO是一个大规模的物体检测、分割和描述数据集。

COCO具有以下特点:

  1. 物体分割
  2. 上下文识别
  3. 超像素材质分割
  4. 33万张图片(超过20万张有标注)
  5. 150万个物体实例
  6. 80个物体类别
  7. 91个材质类别
  8. 每张图片有5个描述
  9. 25万人的关键点

COCO数据集是一个多用途的计算机视觉数据集,它支持多种任务,包括但不限于:

  1. 物体检测(Object Detection):识别图像中的物体并确定它们的位置,通常使用边界框来表示。

  2. 实例分割(Instance Segmentation):不仅检测图像中的物体,还要对每个物体实例进行分割,通常需要模型具备区分同一类别不同实例的能力。

  3. 语义分割(Semantic Segmentation):对图像中的每个像素进行分类,以识别像素所属的类别,如道路、建筑物、树木等。

  4. 关键点检测(Keypoint Detection):识别图像中的特定兴趣点,如人身体的关节,用于动作识别、人机交互等。

  5. 全景分割(Panoptic Segmentation):结合了实例分割和语义分割,对图像中的所有对象和背景进行分割,区分“事物”和“东西”。

  6. 图像描述(Image Captioning):为图像生成描述性的文本,结合图像和语言处理技术。

  7. 图像生成(Image Generation):利用COCO数据集进行图像生成模型的训练,如使用生成对抗网络(GAN)等。

  8. Stuff Segmentation:对图像中的非物体部分(如天空、水和道路等)进行分割。

数据集下载地址

1、2014年数据集的下载
train2014:http://images.cocodataset.org/zips/train2014.zip
val2014:http://images.cocodataset.org/zips/val2014.zip

http://msvocds.blob.core.windows.net/coco2014/train2014.zip

2、2017的数据集的下载
http://images.cocodataset.org/zips/train2017.zip
http://images.cocodataset.org/annotations/annotations_trainval2017.zip

http://images.cocodataset.org/zips/val2017.zip
http://images.cocodataset.org/annotations/stuff_annotations_trainval2017.zip

http://images.cocodataset.org/zips/test2017.zip
http://images.cocodataset.org/annotations/image_info_test2017.zip

train2017    118,000张
train2017:http://images.cocodataset.org/zips/train2017.zip
train2017 annotations:http://images.cocodataset.org/annotations/annotations_trainval2017.zip

val2017    5000张
val2017:http://images.cocodataset.org/zips/val2017.zip
val2017 annotations:http://images.cocodataset.org/annotations/stuff_annotations_trainval2017.zip

test2017    20K张
test2017:http://images.cocodataset.org/zips/test2017.zip
test2017 info:http://images.cocodataset.org/annotations/image_info_test2017.zip
https://blog.csdn.net/qq_41185868/article/details/82939959

### 如何下载COCO数据集 #### 官方网站访问与准备 对于希望获取COCO数据集的研究者或开发者而言,首先应当尝试通过官方渠道进行下载。尽管存在网络连接不稳定的情况[^2],建议优先考虑直接从官方网站获取资源。 #### 下载链接汇总 具体来说,可以通过以下URL来分别下载不同部分的数据: - 训练验证标注文件 (2017版本): [annotations_trainval2017](http://images.cocodataset.org/annotations/annotations_trainval2017.zip)[^3] - 训练集图像 (`train2017`): `http://images.cocodataset.org/zips/train2017.zip`[^4] - 验证集图像 (`val2017`): `http://images.cocodataset.org/zips/val2017.zip` - 测试集图像 (`test2017`): `http://images.cocodataset.org/zips/test2017.zip` 为了提高效率以及应对可能遇到的带宽限制问题,在夜间或其他低流量时段执行下载操作可能会获得更好的体验。 #### 自动化脚本辅助下载 考虑到手动逐个点击下载链接较为繁琐,下面提供了一段简单的Shell命令用于批量下载指定年份的数据集(此处以2017为例),这有助于简化整个过程: ```bash #!/bin/bash # 创建存储目录并切换至该路径下 mkdir -p ~/datasets/coco && cd $_ # 开始依次下载所需文件 wget http://images.cocodataset.org/zips/train2017.zip wget http://images.cocodataset.org/zips/val2017.zip wget http://images.cocodataset.org/zips/test2017.zip wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip ``` 上述脚本会自动创建一个名为`~/datasets/coco`的新文件夹并将所有下载项保存在此处;同时也会一并抓取对应的标签信息以便后续处理分析工作使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值