分析型优化模型
- 设备更新问题的数学模型
- 确定性存储问题数学模型
- 随机性存储问题数学模型
- 分析型优化模型案例
问题:某航空公司为了发展新航线的航运业务,需要增加5架波音747客机。如果购进一架客机需要一次支付5000万美元现金,客机的使用寿命为15年。如果租用一架客机,每年需要支付600万美元的租金,租金以均匀货币流的方式支付。若银行的年利率为12%,问购买还是租用客机合算?如果银行的年利率为6%?
首先明确几个关键概念:
- **现值(Present Value, PV) **:将未来现金流按一定利率折现到当前的价值,用于比较不同时间点的资金价值。
- A元现金t年之后的期末价值:A元现金存入银行,年利率按r计算,若以连续计息的方式结算,则t年之后的存款额为 a ( t ) = A e r t a(t)=Ae^{rt} a(t)=Aert。因此A元现金t年之后的价值是 A e r t Ae^{rt} Aert,称 A e r t Ae^{rt} Aert为A元现金t年之后的期末价值。
- A元现金t年前的贴现价值:现在的A元现金相当于t年之前把 A e − r t Ae^{-rt} Ae−rt元现金存入银行所得,故现在的A元现金t年之前的价值是 A e − r t Ae^{-rt} Ae−rt,称 A e − r t Ae^{-rt} Ae−rt为t年前的贴现价值。
- 均匀货币流:指在固定期间内,每年支付等额的资金。
问题分析:
购买一架飞机可以使用15年,但需要马上支付5000万美元。而同样租一架飞机使用15年,则需要以均匀货币流方式支付15年租金,年流量为600万美元。两种方案所支付的价值无法直接比较,必须将它们都化为同一时刻的价值才能比较。我们以当前价值为准。
下面计算均匀货币流的当前价格:
设 t = 0 t=0 t=0时向银行存入 A e − r T A e^{-rT} Ae−rT美元,按连续复利计算, T T T年之后在银行的存款额恰好是 A A A美元。也就是说, T T T 年后的 A A A 美元在 t = 0 t=0 t=0 时的价值为 A e − r T A e^{-rT} Ae−rT 美元。
那么,对流量为
a
a
a 的均匀货币流,在
[
t
,
t
+
Δ
t
]
[t, t+\Delta t]
[t,t+Δt] 时所存入的
a
Δ
t
a\Delta t
aΔt 美元,在
t
=
0
t=0
t=0 时的价值是
a
Δ
t
⋅
e
−
r
t
=
a
e
−
r
t
Δ
t
a\Delta t \cdot e^{-rt} = ae^{-rt}\Delta t
aΔt⋅e−rt=ae−rtΔt
当
t
t
t从
0
0
0变到
T
T
T时,
[
0
,
T
]
[0,T]
[0,T]周期内均匀流在
t
=
0
t = 0
t=0时的总价值可表示为
P = ∫ 0 T a e − r t d t = a r [ − e − r t ] 0 T = a r ( 1 − e − r T ) P = \int_{0}^{T} ae^{-rt} dt = \frac{a}{r}[-e^{-rt}]_{0}^{T} = \frac{a}{r}(1 - e^{-rT}) P=∫0Tae−rtdt=ra[−e−rt]0T=ra(1−e−rT)
因此, 15 15 15年的租金在当前的价值为
P = 600 r ( 1 − e − 15 r ) P = \frac{600}{r}(1 - e^{-15r}) P=r600(1−e−15r)(万美元)
当 r = 12 % r = 12\% r=12%时:
- P = 600 0.12 ( 1 − e − 0.12 × 15 ) ≈ 4173.5 ( 万美元 ) P = \frac{600}{0.12}(1 - e^{-0.12 \times 15}) \approx 4173.5(万美元) P=0.12600(1−e−0.12×15)≈4173.5(万美元)
- 比较可知,此时租用飞机比购买飞机合算。
当 r = 6 % r = 6\% r=6%时:
- P = 600 0.06 ( 1 − e − 0.06 × 15 ) ≈ 5934.3 ( 万美元 ) P = \frac{600}{0.06}(1 - e^{-0.06 \times 15}) \approx 5934.3(万美元) P=0.06600(1−e−0.06×15)≈5934.3(万美元)
- 此时购买飞机更合算。
思考题1:若将两种支付方式都化为15年之后的价值进行比较,应该如何进行计算?
解(中间结果保留两位小数计算):
- 一次性支付5000万美元,按连续复利计算15年后的终值: 5000 × e r × 15 5000 \times e^{r \times 15} 5000×er×15
- 租赁方式,需要计算15年的终值总和,该式为等比数列求和: ∫ 0 T a e r ( T − t ) d t = a r ( e r T − 1 ) \displaystyle \int_0^T ae^{r(T-t)} dt = \frac{a}{r}(e^{rT}-1) ∫0Taer(T−t)dt=ra(erT−1)
当 r = 12 % r = 12\% r=12%时:
- P购买= 5000 × e 0.12 × 15 = 5000 × 6.05 = 30250 ( 万美元 5000 \times e^{0.12 \times 15}=5000 \times 6.05=30250(万美元 5000×e0.12×15=5000×6.05=30250(万美元
- P租用= a r ( e r T − 1 ) = 600 0.12 ( e 0.12 × 15 − 1 ) = 25250 (万美元) \displaystyle \frac{a}{r}(e^{rT}-1)=\frac{600}{0.12}(e^{0.12 \times 15}-1)=25250(万美元) ra(erT−1)=0.12600(e0.12×15−1)=25250(万美元)
- 结论:租用25250<购买30250,故租用合适
当 r = 6 % r = 6\% r=6%时:
- P购买= 5000 × e 0.06 × 15 = 5000 × 2.46 = 12300 ( 万美元 5000 \times e^{0.06 \times 15}=5000 \times 2.46 =12300(万美元 5000×e0.06×15=5000×2.46=12300(万美元
- P租用= = 600 0.06 ( e 0.06 × 15 − 1 ) = 14596 (万美元 ) =\frac{600}{0.06}(e^{0.06 \times 15}-1)=14596(万美元) =0.06600(e0.06×15−1)=14596(万美元)
- 结论:购买12300<租用14596,故购买合适
思考题2:航通公司一次投资100万元建造一条生产流水线,并一年后建成投产,开始取得经济效益。设流水线的收益是均匀货币流,年流量是30万元,已知银行年利率为10%,问多少年后该公司可以收回投资?
初始投资100万元(现值, t = 0 t=0 t=0 时支付)。一年后( t = 1 t=1 t=1)开始产生均匀货币流,年流量 a = 30 a=30 a=30万元,利率 r = 10 r=10% r=10。求时间 T T T(从投资开始计算),使收益的现值等于初始投资。
收益从
t
=
1
t=1
t=1 开始,持续到
t
=
T
t=T
t=T,均匀货币流的现值为:
∫
1
T
30
⋅
e
−
0.1
t
d
t
=
30
0.1
(
e
−
0.1
⋅
1
−
e
−
0.1
⋅
T
)
\int_{1}^{T} 30 \cdot e^{-0.1t} \, dt = \frac{30}{0.1} \left( e^{-0.1 \cdot 1} - e^{-0.1 \cdot T} \right)
∫1T30⋅e−0.1tdt=0.130(e−0.1⋅1−e−0.1⋅T)
建立方程:
300
(
e
−
0.1
−
e
−
0.1
T
)
=
100
300 \left( e^{-0.1} - e^{-0.1T} \right) = 100
300(e−0.1−e−0.1T)=100
求解得
T
=
5.596
T=5.596
T=5.596年,故航空公司在第5.6年收回投资。