kafka消费者组重平衡能避免吗?

Kafka消费者组的Rebalance可能导致TPS下降、效率不高和延迟。0.11.0.0版引入的StickyAssignor策略尝试减少影响,但仍有局限。Rebalance主要由组成员变化、主题数量或分区变化触发。通过调整session.timeout.ms、heartbeat.interval.ms和max.poll.interval.ms参数,可以优化Consumer心跳、避免非预期的Rebalance。关注GC性能,防止Full GC导致的Rebalance。
摘要由CSDN通过智能技术生成

在 Rebalance 过程中,所有 Consumer 实例共同参与,在协调者组件的帮助下,完成订阅主题分区的分配。但是,在整个过程中,所有实例都不能消费任何消息,因此它对 Consumer 的 TPS 影响很大。

所谓协调者,在 Kafka 中对应的术语是 Coordinator,它专门为 Consumer Group 服务,负责为 Group 执行 Rebalance 以及提供位移管理和组成员管理等。

具体来讲,Consumer 端应用程序在提交位移时,其实是向 Coordinator 所在的 Broker 提交位移。同样地,当 Consumer 应用启动时,也是向 Coordinator 所在的 Broker 发送各种请求,然后由 Coordinator 负责执行消费者组的注册、成员管理记录等元数据管理操作。

所有 Broker 在启动时,都会创建和开启相应的 Coordinator 组件。也就是说,所有 Broker 都有各自的 Coordinator 组件。那么,Consumer Group 如何确定为它服务的 Coordinator 在哪台 Broker 上呢?答案就在我们之前说过的 Kafka 内部位移主题 __consumer_offsets 身上。

目前,Kafka 为某个 Consumer Group 确定 Coordinator 所在的 Broker 的算法有 2 个步骤。

1.确定由位移主题的哪个分区来保存该 Group 数据:partitionId=Math.abs(groupId.hashCode() % offsetsTopicPartitionCount)。

2.找出该分区 Leader 副本所在的 Broker,该 Broker 即为对应的 Coordinator。

在实际使用过程中,Consumer 应用程序,特别是 Java Consumer API,能够自动发现并连接正确的 Coordinator,我们不用操心这个问题。知晓这个算法的最大意义在于,它能够帮助我们解决定位问题。当 Consumer Group 出现问题,需要快速排查 Broker 端日志时,我们能够根据这个算法准确定位 Coordinator 对应的 Broker,不必一台 Broker 一台 Broker 地盲查。

Rebalance 的弊端:

1.Rebalance 影响 Consumer 端 TPS。这个之前也反复提到了,这里就不再具体讲了。总之就是,在 Rebalance 期间,Consumer 会停下手头的事情,什么也干不了。

2.Rebalance 很慢。如果你的 Group 下成员很多,就一定会有这样的痛点。还记得我曾经举过的那个国外用户的例子吧?他的 Group 下有几百个 Consumer 实例,Rebalance 一次要几个小时。在那种场景下,Consumer Group 的 Rebalance 已经完全失控了。

3.Rebalance 效率不高。当前 Kafka 的设计机制决定了每次 Rebalance 时,Group 下的所有成员都要参与进来,而且通常不会考虑局部性原理,但局部性原理对提升系统性能是特别重要的。

社区于 0.11.0.0 版本推出了 StickyAssignor,即有粘性的分区分配策略。所谓的有粘性,是指每次 Rebalance 时,该策略会尽可能地保留之前的分配方案,尽量实现分区分配的最小变动。不过有些遗憾的是,这个策略目前还有一些 bug,而且需要升级到 0.11.0.0 才能使用,因此在实际生产环境中用得还不是很多。

在真实的业务场景中,很多 Rebalance 都是计划外的或者说是不必要的。

Rebalance 发生的时机有三个:

  • 组成员数量发生变化
  • 订阅主题数量发生变化
  • 订阅主题的分区数发生变化

后面两个通常都是运维的主动操作,所以它们引发的 Rebalance 大都是不可避免的。

主要是因为组成员数量变化而引发的 Rebalance 该如何避免?

Consumer 实例增加的情况一般都是自己出于增加 TPS 或提高伸缩性的需要做的,无法避免。

Group 下实例数减少,即Consumer 实例会被 Coordinator 错误地认为“已停止”从而被“踢出”Group。

Coordinator 会在什么情况下认为某个 Consumer 实例已挂从而要退组呢?

当 Consumer Group 完成 Rebalance 之后,每个 Consumer 实例都会定期地向 Coordinator 发送心跳请求,表明它还存活着。如果某个 Consumer 实例不能及时地发送这些心跳请求,Coordinator 就会认为该 Consumer 已经“死”了,从而将其从 Group 中移除,然后开启新一轮 Rebalance。Consumer 端有个参数,叫 session.timeout.ms,就是被用来表征此事的。该参数的默认值是 10 秒,即如果 Coordinator 在 10 秒之内没有收到 Group 下某 Consumer 实例的心跳,它就会认为这个 Consumer 实例已经挂了。可以这么说,session.timout.ms 决定了 Consumer 存活性的时间间隔。

除了这个参数,Consumer 还提供了一个允许你控制发送心跳请求间隔的参数,就是 heartbeat.interval.ms。频繁地发送心跳请求会额外消耗带宽资源,但好处是能够更加快速地知晓当前是否开启 Rebalance,因为,目前 Coordinator 通知各个 Consumer 实例开启 Rebalance 的方法,就是将 REBALANCE_NEEDED 标志封装进心跳请求的响应体中。

除了以上两个参数,Consumer 端还有一个参数,用于控制 Consumer 实际消费能力对 Rebalance 的影响,即 max.poll.interval.ms 参数。它限定了 Consumer 端应用程序两次调用 poll 方法的最大时间间隔。它的默认值是 5 分钟,表示你的 Consumer 程序如果在 5 分钟之内无法消费完 poll 方法返回的消息,那么 Consumer 会主动发起“离开组”的请求,Coordinator 也会开启新一轮 Rebalance。

生产环境中,一般配置:

1.设置 session.timeout.ms = 6s。

2.设置 heartbeat.interval.ms = 2s。

3.要保证 Consumer 实例在被判定为“dead”之前,能够发送至少 3 轮的心跳请求,即 session.timeout.ms >= 3 * heartbeat.interval.ms。

将 session.timeout.ms 设置成 6s 主要是为了让 Coordinator 能够更快地定位已经挂掉的 Consumer,早日把它们踢出 Group。

Consumer 消费时间过长导致Rebalance 。max.poll.interval.ms参数值的设置显得尤为关键。如果要避免非预期的 Rebalance,你最好将该参数值设置得大一点,比你的下游最大处理时间稍长一点。如果你的业务处理需要5分钟,那么,你可以将该参数设置为 6 分钟左右。

如果恰当地设置了这几个参数,却发现还是出现了 Rebalance,那么建议排查一下Consumer 端的 GC 表现,比如是否出现了频繁的 Full GC 导致的长时间停顿,从而引发了 Rebalance。在实际场景中,太多因为 GC 设置不合理导致程序频发 Full GC 而引发的非预期 Rebalance 了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值