1. 作用
简单来说,标准差是一组数据平均值分散程度
的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
2. 计算公式
需要注意:
方差分为总体标准差
和样本标准差
,两者的计算公式是不一样的。
下面的公式为总体标准差
计算公式
下面的公式为样本标准差
计算公式
注:
n为样本总量。二者的区别较多,自己都不是很清楚,但是自由度差1。
3. 例子
例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。
经过计算,两组数据的平均值都为70
在Excel中使用STDEV
函数来计算标准差(用MATLAB也计算过,函数为std
,结果一致),计算结果如下:
A | B |
---|---|
18.71 | 2.37 |
说明:
A组的分数与平均值的差异较大。
B组的分数与平均值的差异相对较小。
结论:
STDEV
计算的是样本的标准差
。
问题:
在上面的这个例子中应该用的是总体标准差,而不应该是样本标准差吧??
在Excel中使用STDEVPA
计算得到结果如下:
A | B |
---|---|
17.08 | 2.316 |