opencv图像处理
文章平均质量分 82
HarrietLH
这个作者很懒,什么都没留下…
展开
-
图像处理——轮廓检测
文章目录一、图像轮廓二、图像轮廓检测的实现三、轮廓特征四、轮廓近似一、图像轮廓图像轮廓与图像边界区别图像轮廓指的是图像整体,连接在一起,而图像边界可能是零散的线段。二、图像轮廓检测的实现opencv轮廓检测函数def findContours(image: Any, mode: Any, method: Any, contours: Any = None,原创 2021-10-19 14:53:27 · 6107 阅读 · 0 评论 -
图像处理——Canny边缘检测
文章目录一、Canny边缘检测的过程二、Canny边缘检测过程的详细介绍(一)平滑滤除噪声(二)梯度和方向(三)非极大值抑制(四)双阈值三、Canny的实现一、Canny边缘检测的过程使用高斯滤波器,进行图像平滑操作,滤除噪声具体图像平滑操作,可以参考下面链接https://blog.csdn.net/qq_43279579/article/details/120766454计算图像中每个像素点的梯度张度和方向应用非极大值抑制,消除边缘检测带来的杂散响应应用双阈值检测,来确定真实的和潜在的边原创 2021-10-19 13:29:24 · 944 阅读 · 0 评论 -
图像基本处理——Sobel,Scharr,Laplacian算子
文章目录一、Sobel算子一、Sobel算子原创 2021-10-16 12:56:59 · 2278 阅读 · 0 评论 -
图像基本处理——腐蚀和膨胀
文章目录一、形态学——腐蚀二、形态学——膨胀三、腐蚀和膨胀组合运算(一)开运算(二)闭运算(三)梯度运算四、礼帽和黑帽(一)礼帽(二)黑帽一、形态学——腐蚀腐蚀就是通过卷积核,将边界部分向内部靠近,逐步腐蚀掉。opencv腐蚀函数def erode(src: Any, kernel: Any, dst: Any = None, anchor: Any = None, iterations: Any = None,原创 2021-10-15 15:40:13 · 10737 阅读 · 0 评论 -
图像基本处理——图像阈值和平滑
文章目录一、图像阈值二、图像平滑(一)均值滤波(二)方框滤波(三)高斯滤波(四)中值滤波一、图像阈值图像是由多个像素点组成的,每个像素点有一个数值。图像阈值就是一个适当的数值,通过每个像素点的值与阈值进行比较,根据比较结果对不同像素点进行不同处理。opencv阈值处理函数def threshold(src: Any, thresh: Any, maxval: Any, type: Any,原创 2021-10-14 18:14:34 · 2913 阅读 · 1 评论 -
图像基本操作——图像边界填充和图像融合
文章目录一、图像边界填充二、图像融合操作环境python3.6+Pycharm/Jupyter Notebook一、图像边界填充有时候,对于图像进行处理的时候,需要对图像进行边界填充。opencv边界填充函数说明def copyMakeBorder(src: Any, top: Any, bottom: Any, left: Any, r原创 2021-10-14 16:03:06 · 4025 阅读 · 0 评论 -
图像视频基本操作——读取相关操作
文章目录一、图像的组成二、图片基本操作(一)图像的读取(二)图片显示(三)图片保存(四)图像通道三、视频的基本操作——读取一、图像的组成计算机中图像是由多个像素点组成,每个像素点是一个值,每个数值的数值为0~255之间。RGB称为彩色通道,一般情况下彩色图片包含三个通道。在计算机中,图像的数据化为矩阵,矩阵的大小表示图像的大小。例如,一个图像是500*500,彩色图像数据化为[500,500,3]的矩阵。二、图片基本操作(一)图像的读取opencv读取函数#读取方式可以省略cv2.imre原创 2021-10-13 16:54:07 · 508 阅读 · 0 评论