p3935 Calculating 莫比乌斯反演式的套路+数论分块整理

题意:定义函数 f ( x ) = ∑ i = 1 x [ i ∣ x ] f(x)= \sum_{i = 1}^x[i|x] f(x)=i=1x[ix],即x的因子个数,给定 l l l, r r r ( ∑ i = l r f ( i ) ) % 998244353 (\sum_{i=l}^r{f(i)})\% 998244353 (i=lrf(i))%998244353
求和数论题在优化复杂度时经常使用把遍历每个数变成遍历每个因子的套路,是很多题的突破口.

数论分块

就在这里写了,数论分块只是一个简单的工具,就不单独拿出来整理.
给定 n n n,求 ( ∑ i = 1 n ⌊ n i ⌋ ) (\sum_{i=1}^n\lfloor\frac{n}i\rfloor) (i=1nin)%998244353. n ≤ 1 0 12 n≤10^{12} n1012
复杂度 O ( n ) O(\sqrt n) O(n )

for(int l=1,r;l<=n;l=r+1)
{
    r=n/(n/l);
    ans+=(r-l+1)*(n/l);
    ans %= MOD;
}
题解

题目给出的是左右边界,那么我们应该求出一个前缀和来得到答案.
g ( x ) = ∑ i = 1 x f ( i ) g(x) = \sum_{i = 1}^xf(i) g(x)=i=1xf(i),那么结果是 g ( r ) − g ( l − 1 ) g(r)-g(l-1) g(r)g(l1).
接下来考虑
∑ i = 1 n f ( i ) \sum_{i = 1}^nf(i) i=1nf(i)
f ( i ) f(i) f(i)已经可以表示为i的因子个数,可以表示为 ∑ d ∣ n 1 = ∑ i = 1 n [ i ∣ n ] \sum_{d|n}1 = \sum_{i = 1}^n[i|n] dn1=i=1n[in]
整合进 g g g
g ( n ) = ∑ i = 1 n ∑ d ∣ n 1 g(n) = \sum_{i = 1}^n\sum_{d|n}1 g(n)=i=1ndn1
接下来要更换枚举项:
这个函数的意思是: 1 ∼ n 1\sim n 1n每个数的因子个数加起来的总和
我们换个说法:在 1 ∼ n 1\sim n 1n中是 i i i的倍数的数有 x i x_i xi个,求 ∑ i = 1 n x i \sum_{i = 1}^n{x_i} i=1nxi
1 ∼ n 1\sim n 1n中是 d d d的倍数的数有多少个呢? ⌊ n d ⌋ \lfloor\frac{n}d\rfloor dn ∑ i = 1 n x i = ( ∑ i = 1 n ⌊ n i ⌋ = g ( n ) ) \sum_{i = 1}^n{x_i}=(\sum_{i = 1}^n \lfloor\frac{n}i\rfloor = g(n)) i=1nxi=(i=1nin=g(n))
括号这一部分整除分块, O ( n ) O(\sqrt n) O(n )解决.

#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll;

const int mod = 998244353;
ll l,r;

ll f(ll x){
	ll ans=0;
	for(ll l=1,r;l<=x;l=r+1)           
	{
		r=x/(x/l);                     
		ans+=((r-l+1)*(x/l)%mod)%mod; 
	}
	return ans;
}

int main(){
	scanf("%lld%lld",&l,&r);
	printf("%lld",( (f(r)%mod-f(l-1)%mod+mod)%mod ));
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值