并查集
用途
- 解决连接问题
- 解决路径问题
并查集的基本操作
union:两个元素之间建立连接
find:找到某个元素所连接的根元素
基本思想:用树来表示彼此连接的元素,当两个元素连接时,就将它们所在的树的根节点相互连接
基本代码
#include <cassert>
using namespace std;
//集合以根节点彼此连接
namespace UF2{
class UnionFind{
private:
int* parent;
int count;
public:
UnionFind(int count){
parent = new int[count];
this->count = count;
for(int i=0;i<count;i++)
parent[i] = i;
}
~UnionFind(){
delete[] parent;
}
int find(int p){
assert(p>=0&&p<count);
while(p!=parent[p])
p=parent[p];
return p;
}
bool isConnected(int p,int q){
return find(p) == find(q);
}
void unionElements(int p,int q){
int pRoot = find(p);
int qRoot = find(q);
if(pRoot==qRoot)
return;
parent[pRoot]=qRoot;
}
};
}
优化思路
第一种
将元素较多的树的根节点作为合并后的新树的根节点,生成新树
作用:较大的树一般会有更大的高度,合并后可以减少新树的高度,提高find时的效率
//基于size(基于树的大小)的优化
namespace UF3
{
class UnionFind
{
private:
int* parent;
int* sz;
int count;
public:
UnionFind(int count)
{
parent = new int[count];
sz = new int[count];
this->count = count;
for(int i=0; i<count; i++)
{
parent[i] = i;
sz[i] = 1;
}
}
~UnionFind()
{
delete[] parent;
}
int find(int p)
{
assert(p>=0&&p<count);
while(p!=parent[p])
p=parent[p];
return p;
}
bool isConnected(int p,int q)
{
return find(p) == find(q);
}
void unionElements(int p,int q)
{
int pRoot = find(p);
int qRoot = find(q);
if(pRoot==qRoot)
return;
if(sz[pRoot]<sz[qRoot])
{
parent[pRoot] = qRoot;
sz[qRoot] += sz[pRoot];
}
else
{
parent[qRoot] = pRoot;
sz[pRoot] += sz[qRoot];
}
}
};
}
第二种
将高度较高的树的根节点作为新树的根节点,生成新树
#ifndef INC_04_OPTIMIZE_BY_SIZE_UNIONFIND5_H
#define INC_04_OPTIMIZE_BY_SIZE_UNIONFIND5_H
#include <cassert>
using namespace std;
//并查集操作的复杂度近乎为O(1)
// 我们的第五版Union-Find
//基于rank(基于树的层次)的优化
namespace UF5
{
class UnionFind
{
private:
int* parent;
int* rank; //rank[i]表示以i为根的集合所表示的树的层数
int count;
public:
UnionFind(int count)
{
parent = new int[count];
rank = new int[count];
this->count = count;
for(int i=0; i<count; i++)
{
parent[i] = i;
rank[i] = 1;
}
}
~UnionFind()
{
delete[] parent;
}
int find(int p)
{
assert(p>=0&&p<count);
//路径压缩
//第一版
// while(p!=parent[p])
// {
// parent[p]=parent[parent[p]];
// p = parent[p];
// }
//return p;
//第二版,压缩到高度为2
//理论上比第一版更有,实际运行情况不一定
if(p !=parent[p])
parent[p] = find(parent[p]);
return parent[p];
}
bool isConnected(int p,int q)
{
return find(p) == find(q);
}
void unionElements(int p,int q)
{
int pRoot = find(p);
int qRoot = find(q);
if(pRoot==qRoot)
return;
if(rank[pRoot]<rank[qRoot])
{
parent[pRoot] = qRoot;
}
else if(rank[qRoot] < rank[pRoot])
{
parent[qRoot] = pRoot;
}
else
{
parent[pRoot] = qRoot;
rank[qRoot]+=1;
}
}
};
}
#endif