Dream come ture~

学习学习~

【SQL学习】必须掌握的29种SQL语句优化

转载自:https://www.cnblogs.com/Little-Li/p/8031295.html 对查询进行优化,应尽量避免全表扫描,首先应考虑在where及order by 涉及的列上建立索引。 应尽量避免在where子句中使用!=或<>操作符,否则引擎将放...

2019-07-08 14:31:06

阅读数 19

评论数 0

GitLab工具之SmartGit

破解 smartgit需要输入序列号解决方法,找到路径:%APPDATA%\syntevo\SmartGit<main-smartgit-version> 然后删除: settings.xml 再重新打开smartgit。 步骤一:windows+R,输入%APPDAT...

2019-07-01 16:18:34

阅读数 40

评论数 0

【Tensorflow】防止过拟合之正则化

Reference https://stackoverflow.com/questions/41841050/tensorflow-adding-regularization-to-lstm?noredirect=1&lq=1 https://blog.csdn.net/huqin...

2019-04-29 16:50:21

阅读数 73

评论数 0

linux基础知识之常见的问题[深度学习版]

Linux基础知识之常见坑Python安装1. Python安装第三方库,超时报错—Read timed out2. ImportError: cannot import name pywrap_tensorflow Python安装 1. Python安装第三方库,超时报错—Read timed...

2019-04-26 10:57:59

阅读数 60

评论数 0

linux基础知识之常用命令[深度学习版]

linux基础知识之常用命令Linux系统的文件(一) 编辑器中的行号(二)文件内容搜索(三)查看 文件/文件夹 的修改时间python中的库(一)查看python中库的版本及其安装路径磁盘空间(df、du)(一)查看磁盘空间使用情况GPU(一)查看GPU的使用情况(二)tensorflow中指定...

2019-04-26 10:35:18

阅读数 210

评论数 0

linux基础知识之环境变量

linux基础知识之环境变量(一)Linux下的变量1. Linux的变量种类2. 设置变量的三种方法3. 环境变量的查看4. 环境变量的删除(unset)常用的环境变量PATHLD_LIBRARY_PATH参考资料:新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图...

2019-04-24 11:10:40

阅读数 37

评论数 0

LSTM神经元中参数个数

LSTM的神经元个数 1. LSTM简单介绍 上图中间位置就是一个LSTM cell,红框框从左到右,依次是: 忘记门层: 决定从细胞状态中丢弃什么信息,通过当前时刻输入(xtx_{t}xt​)和前一个时刻输出(ht−1h_{t-1}ht−1​)决定。 细胞状态: 确定并更新新消息到当前时刻的细...

2019-04-23 17:03:30

阅读数 322

评论数 0

数据预处理(三)数据变换

文章目录数据变换一、特征二值化二、特征归一化(一)、总和标准化(二)、标准差标准化(三)、极大值标准化(四)、极差标准化(区间放缩法,0-1标准化)三、连续特征变换四、定性特征哑编码:One-hot编码 数据变换 数据变换即对数据进行规范化处理,以便于后续的信息挖掘。常见的数据变换包括:特征二...

2018-11-27 10:24:12

阅读数 882

评论数 0

数据预处理(一)直观分析

一、直观分析:作图 通过作图可以观察数据的分布情况,一般观察图上的几点: 找到数据的平均值、标准差、众数、中位数、置信区间、局部峰值等 分析数据变化情况及变化的原因。 ...

2018-11-02 16:46:52

阅读数 113

评论数 0

数据预处理(二)数据清理

文章目录一、直观分析:作图二、数据清理数据去重错误数据纠正格式标准化异常值处理三、数据变换特征二值化特征归一化连续特征变换特征哑编码四、特征离散化五、数据集成六、正负样本均衡 一、直观分析:作图 二、数据清理 数据去重 错误数据纠正 格式标准化 异常值处理 三、数据变换 特征二值化...

2018-11-02 16:46:28

阅读数 143

评论数 0

机器学习思维导图

机器学习思维导图机器学习思维导图思维导图解释需求分析与数据获取数据预处理特征工程算法模型模型评估 机器学习思维导图 思维导图解释 需求分析与数据获取 在需求分析与数据获取中,我们往往要考虑以下几个方面: 确定模型目标 根据目标得到所需的相关因素? 特征的定义方式(比如,一...

2018-11-01 14:12:18

阅读数 613

评论数 0

深度学习笔记——理论与推导之Reinforcement Learning(十三)

Reinforcement Learning(强化学习)Reinforcement Learning 机器学习的分支: 有监督学习是机器学习任务的一种,它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。即:给定数据,预测标签。 无监督学习是机器学习任...

2017-08-16 13:20:30

阅读数 5272

评论数 1

深度学习笔记——理论与推导之Structured Learning【NLP】(十二)

Language TechnologyMeaning of Word(一个vector表示一个word)Predicting the next word给一串sequence of words,预测下一个单词 我们现在要做的就是将wi-1和wi-2描述成一个feature vector,1- of...

2017-08-15 11:43:33

阅读数 424

评论数 0

深度学习笔记——理论与推导之Structured Learning【Markov Logic Network】(十一)

Markov Logic Network Graphical Model是Structured Learning里一种用Graph描述evaluation的方式。Graphical Model有很多中,比如深度学习笔记——理论与推导之Structured Learning【Markov Rando...

2017-08-14 14:53:08

阅读数 1760

评论数 1

深度学习笔记——理论与推导之Structured Learning【Markov Random Field】(十)

Graphical Model & Gibbs Sampling(Sturctured Learning) Graphical Model是Structured Learning中的一种。 Structured Learning复习 Structured Learning中两个存在困...

2017-08-10 17:03:54

阅读数 1142

评论数 1

深度学习笔记——理论与推导之Structured Learning【Learning with Hidden Information】(九)

引言: Different Kinds of Learning: 1. Supervised Learning: Data: 2. Semi-supervised Learning Data: 3. Unsupervised Learning Data: ...

2017-08-10 11:45:12

阅读数 1347

评论数 0

深度学习笔记——理论与推导之Structured Learning【Sequence Labeling Problem】(八)

Sequence Labeling(序列标注问题),可以用RNN解决,也可以用Structured Learning(two steps,three problems)解决 常见问题: - POS tagging(标记句子中每个词的词性): 如:John saw the saw–...

2017-08-10 11:45:00

阅读数 2071

评论数 0

深度学习笔记——理论与推导之Structured Learning【Structured SVM】(七)

Separable case 1. 定义: 2. 用来计算weight的Structured Perceptron演算法: 如果我们能找到一个满足上图的feature function,那么我们就可以用Structured Perceptron演算法找到我们所要的weight(...

2017-08-10 11:44:48

阅读数 2108

评论数 0

深度学习笔记——理论与推导之Structured Learning【Structured Linear Model】(六)

Structured Learning Sturctured Learning 引入 定义: 输入X,输出Y 都是有结构的对象(objects with structures) Object:例如sequence,list,tree,bounding box等 函数:

2017-08-10 11:44:24

阅读数 1751

评论数 0

深度学习笔记——理论与推导之RNN的训练过程BPTT(五)

Training RNN——BPTT 由于RNN和时间序列有关,因此我们不能通过Backpropagation来调参,我们使用的是Backpropagation through time(BPTT) 回顾Backpropagation Backpropagation thro...

2017-08-10 11:43:39

阅读数 2168

评论数 3

提示
确定要删除当前文章?
取消 删除
关闭
关闭