共轭分布推导

  1. 二项式分布的共轭分布是( C )
    A. 正态分布
    B. Dirichlet分布
    C. Beta分布
    D. 指数分布
  2. 多项式分布的共轭分布是( B )
    A. 正态分布
    B. Dirichlet分布
    C. Beta分布
    D. 指数分布

先看贝叶斯公式: p ( θ ∣ x ) = p ( x ∣ θ ) p ( θ ) ∫ p ( x ∣ θ ) p ( θ ) d θ p(\theta|x)=\frac{p(x|\theta)p(\theta)}{\int p(x|\theta)p(\theta)d\theta} p(θx)=p(xθ)p(θ)dθp(xθ)p(θ)
其中, p ( θ ∣ x ) p(\theta|x) p(θx)是后验概率posterior, p ( x ∣ θ ) p(x|\theta) p(xθ)是似然估计likelihood, p ( θ ) p(\theta) p(θ)是先验概率prior。分母是evidence,可以看作是做归一化正则化处理,不会影响后验的分布。
共轭分布: 如果将似然函数的分布和先验概率的分布带入贝叶斯公式,得到的后验分布和先验分布是同一个分布,那么就称似然函数分布和先验概率分布为共轭分布。
二项式分布与Beta分布为共轭分布推导:
假设先验概率服从beta分布,即 θ ∼ B e t a ( α 1 , α 2 ) \theta\sim Beta(\alpha_1,\alpha_2) θBeta(α1,α2)
则,我们可以写成: p ( θ ∣ α 1 , α 2 ) = B e t a ( θ ∣ α 1 , α 2 ) = Γ ( α 1 + α 2 ) Γ ( α 1 ) Γ ( α 2 ) θ α 1 − 1 ( 1 − θ α 2 − 1 ) p(\theta|\alpha_1,\alpha_2)=Beta(\theta|\alpha_1,\alpha_2)=\frac{\Gamma(\alpha_1+\alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)}\theta^{\alpha_1-1}(1-\theta^{\alpha_2-1}) p(θα1,α2)=Beta(θα1,α2)=Γ(α1)Γ(α2)Γ(α1+α2)θα11(1θα21)
其中 Γ \Gamma Γ函数为阶乘函数。
同理,假设似然函数的分布为二项式分布,则可以写出:
p ( x ∣ θ , n ) = ( x n ) θ x ( 1 − θ ) n − x p(x|\theta,n)=(^n_x)\theta^x(1-\theta)^{n-x} p(xθ,n)=(xn)θx(1θ)nx
同时,
( x n ) = Γ ( x ) Γ ( n ) Γ ( n − x ) (^n_x)=\frac{\Gamma(x)}{\Gamma(n)\Gamma(n-x)} (xn)=Γ(n)Γ(nx)Γ(x)
故,
p ( θ ∣ x ) ∝ p ( θ ∣ α 1 , α 2 ) p ( x ∣ θ , n ) = B e t a ( α 1 + x , α 2 + n − x ) p(\theta|x)\propto p(\theta|\alpha_1,\alpha_2)p(x|\theta,n)=Beta(\alpha_1+x,\alpha_2+n-x) p(θx)p(θα1,α2)p(xθ,n)=Beta(α1+x,α2+nx)
同时,分母evidence不影响分布。故,二项式分布与Beta分布为共轭分布。
除此之外,多项式分布和Dirichlet分布为共轭分布,泊松分布和伽马分布为共轭分布。笔者能力有限,推导需要不少时间,其他共轭分布暂不做推导。同时考试也大概率不会涉及,仅需记住即可。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值