
因果解耦表征 | (香港理工ICLR24)联合学习个性化因果不变表示以应对异构联邦客户端
本论文提出了一种新的个性化联邦学习方法FedSDR,旨在解决异构联邦客户端中的捷径学习问题。实验主要验证FedSDR在不同数据集上的性能,以及与现有方法的对比。实验场景包括图像分类任务,其中存在捷径特征(如背景颜色或环境),这些特征在训练数据中与标签高度相关,但在测试数据中可能变化。本论文针对个性化联邦学习(PFL)中的捷径陷阱问题,提出了一种联邦捷径发现与消除方法(FedSDR)。通过构建异构客户端的结构因果模型,设计了协作式捷径特征发现和基于个性化因果不变表示的捷径消除方法。


























