Intensity-Aware Loss for Dynamic Facial Expression Recognition in the Wild
(Li 等, 2023, p. 67) (pdf) 🔤野外动态面部表情识别的强度感知损失🔤
#AAAI2023
GitHub - muse1998/IAL-for-Facial-Expression-Recognition: Dynamic Facial Expression Recognition
[!motivation]
SFER 数据集的标注,表情的强度均匀,且比较高;而 DFER的数据表情的强度是不均匀的,有大有小,而标注是不含有强度相关信息。模型平等的对待每一个 sample, 就会导致类内误差大,类间误差小
[!method]
global convolution-attention block (GCA)
- 调整low-sample 的特征图的通道,抑制无用的通道,增强重要的通道
Intensity-aware Loss
L I A = − l o g ( P I A ) L_{IA}=-log(P_{IA}) LIA=−log(PIA)
P I A = e x