动态表情识别

Intensity-Aware Loss for Dynamic Facial Expression Recognition in the Wild

(Li 等, 2023, p. 67) (pdf) 🔤野外动态面部表情识别的强度感知损失🔤
#AAAI2023
GitHub - muse1998/IAL-for-Facial-Expression-Recognition: Dynamic Facial Expression Recognition

[!motivation]
SFER 数据集的标注,表情的强度均匀,且比较高;而 DFER的数据表情的强度是不均匀的,有大有小,而标注是不含有强度相关信息。模型平等的对待每一个 sample, 就会导致类内误差大,类间误差小

Pasted image 20231224175534

[!method]
global convolution-attention block (GCA)

  • 调整low-sample 的特征图的通道,抑制无用的通道,增强重要的通道
  • Pasted image 20231224185119
    Pasted image 20231224175544

Intensity-aware Loss
L I A = − l o g ( P I A ) L_{IA}=-log(P_{IA}) LIA=log(PIA)
P I A = e x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值