Windows10 + GTX1660ti + Tensorflow-GPU 配置


因为之前安装时遇到过一些问题,也参考了一些资料,在这里结合自己的笔记本配置记录下自己的配置过程。

1、安装准备

2、安装过程

Python

直接下载安装 Anaconda 即可,安装教程可参考 此篇博客 https://blog.csdn.net/ITLearnHall/article/details/81708148 写得很详细。
在这里插入图片描述

CUDA

CUDA 是用于 GPU 的一组驱动程序,它让 GPU 能够运行底层编程语言来进行并行计算。

在安装之前先看下自己对应的版本号,这个很重要,不然后面会遇到麻烦。查看步骤:
第一步: 在桌面空白处右击打开NVIDIA控制面板
在这里插入图片描述

第二步: 点击帮助->信息系统->组件
在这里插入图片描述
可以看到 CUDA 版本对应的是10.1
在这里插入图片描述

第三步: 打开安装准备提供的下载链接,显示如下页面
在这里插入图片描述
可以看到下面的界面,这里我选择的是最初发行的版本10.1,当然你也可以选择更新版本的,按照箭头和红圈的标识下载就行
在这里插入图片描述
因为自己已经安装过了,就不在此安装展示,安装过程有问题可以私聊。

第四步: 添加环境变量, 安装好之后需要添加环境变量(也有可能安装过程已经默认添加了),第二个矩形框有三个,前面两个是必选的。

在这里插入图片描述
可以在cmd命令窗口中输入:nvcc -V
查看cuda是否安装成功(如下表示已安装成功):
在这里插入图片描述

cuDNN

cuDNN 用于深度学习的高度优化的原语库,使用cuDNN并在GPU上运行时,通常可以将模型的训练速度提高 50% 到 100%。
这个是需要注册账号下载,没注册过的可以按照下面箭头操作
在这里插入图片描述
在这里插入图片描述
注册的邮箱进行验证
在这里插入图片描述
下载完成后对cuDNN安装,解压下载的 cudnn-10.1-windows10-x64-v7.6.5.32.zip
会有三个文件夹,里面各有一个文件:
在这里插入图片描述
将上面文件夹中的文件拷贝到CUDA路径下对应的文件夹即可
cuDNN文件夹下的: bin/cudnn64_7.dll 拷贝到 Cuda文件夹下的 bin/ 目录下
cuDNN文件夹下的: include/cudnn.h 拷贝到Cuda文件夹下的 include/ 目录下
cuDNN文件夹下的: lib/x64/cudnn.lib 拷贝到Cuda文件夹下的 lib/x64/cudnn.lib目录下
(CUDA默认安装路径为C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1)

tensorflow-gpu 版本安装

采用 pip 安装命令:

pip install tensorflow-gpu==1.14.0

pip install tensorflow-gpu==1.14.0 -i https://pypi.tuna.tsinghua.edu.cn/simple some-package

测试:

>>>import tensorflow as tf
>>>a = tf.constant(2)
>>>b = tf.constant(3)
>>>sess = tf.Session()
>>>print(sess.run(a + b))
5

至此,整个配置过程完成。

参考资料

https://blog.csdn.net/weixin_43318717/article/details/94433790
https://blog.csdn.net/weixin_38314865/article/details/101562436

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值