代码随想录算法训练营第53天 | 1143. 最长公共子序列、1035. 不相交的线、53. 最大子数组和

文章介绍了使用动态规划解决两个问题:计算两个字符串的最长公共子序列和找到一个整数数组中的最大子数组和。在最长公共子序列问题中,dp[i][j]表示text1的前i个字符和text2的前j个字符的最长公共子序列;而在最大子数组和问题中,dp[i]表示以nums[i]结尾的子数组的最大和。两种情况都采用了相同的状态转移方程来更新dp矩阵。
摘要由CSDN通过智能技术生成

1143. 最长公共子序列

定义dp[i][j]表示长度分别为i j 的字符串的最长公共子序列

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));
        for (int i = 1; i <= text1.size(); i++) {
            for (int j = 1; j <= text2.size(); j++) {
                if (text1[i - 1] == text2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[text1.size()][text2.size()];
    }
};

1035. 不相交的线

和上一题一样

class Solution {
public:
    int maxUncrossedLines(vector<int>& A, vector<int>& B) {
        vector<vector<int>> dp(A.size() + 1, vector<int>(B.size() + 1, 0));
        for (int i = 1; i <= A.size(); i++) {
            for (int j = 1; j <= B.size(); j++) {
                if (A[i - 1] == B[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[A.size()][B.size()];
    }
};

53. 最大子数组和

dp[i] 表示以nums[i]结尾的数组的最大和

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int n = nums.size();
        vector<int> dp(n, 0);
        dp[0] = nums[0];
        int ans = dp[0];
        for (int i = 1; i < n; i++) {
            dp[i] = max(dp[i - 1] + nums[i], nums[i]);
            ans = max(ans, dp[i]);
        }
        return ans;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值