python对array数组(或矩阵)进行重新排序(且索引确保不同)

本文介绍了如何利用Pandas DataFrame和Numpy数组的索引列表进行高效排序,特别关注了一维和三维数组的应用实例。通过random.sample确保索引的独特性,适用于数据处理和数组操作的开发者。
摘要由CSDN通过智能技术生成

首先需要知道一性质:pandas的dataframe或numpy的array、matrix,都可以直接通过索引列表进行排序。
例如三维的array数组:A,A.shape=(x,y,z)。则A[index列表]重排的就是x的元素顺序。同理B.shape=(n,x,y,z),则B[index列表]重排的就是n的元素顺序。
下面是一维的测试:
注意:使用random.sample是为了确保生成的索引号不同。np.random好像没有这个功能。
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值