首先需要知道一性质:pandas的dataframe或numpy的array、matrix,都可以直接通过索引列表
进行排序。
例如三维的array数组:A,A.shape=(x,y,z)。则A[index列表]重排的就是x的元素顺序。同理B.shape=(n,x,y,z),则B[index列表]重排的就是n的元素顺序。
下面是一维的测试:
注意:使用random.sample
是为了确保生成的索引号不同。np.random好像没有这个功能。
python对array数组(或矩阵)进行重新排序(且索引确保不同)
于 2022-02-15 17:27:02 首次发布
本文介绍了如何利用Pandas DataFrame和Numpy数组的索引列表进行高效排序,特别关注了一维和三维数组的应用实例。通过random.sample确保索引的独特性,适用于数据处理和数组操作的开发者。
摘要由CSDN通过智能技术生成