题意:给定一个长度为n的序列,一个k值,要求在从第1项到第i项中选择若干项且必须包括第i项使得选择的项的和<=k,问使得不被选的项最少为多少。
思路:贪心的想一下,从第1项到第i项必须选择第i项,其余选的项的数值越小越好,这样我们就可以选择出尽可能多的项,那么如何才能很快的选出这些小的项呢。
首先由于a[i]的数据范围是1e9,我们需要先进行离散化一下,离散化不要用unique函数,我们需要将数值相等的项保留,这样做可以把后续的处理变得简单一点。
此时需要维护两个树状数组,第一个树状数组逐个将离散化后的位置处插入对应的数值,我们需要定义一个l,r代表选取的值的范围(离散化后的),为了选取尽可能小的项,所以l一定为1,此时我们就可以二分这个树状数组从而得到尽可能小的那些项的和,并且要保证(二分的答案+a[i])<=k,从而二分出r。
我们还需要第二个树状数组,这个树状数组的意义是离散化后的位置是否已经插入(就是将i之前的项出现的位置在这个树状数组上置1),这样我们就可以访问这个树状数组的(l,r)区间的和,得到的结果就是我们可以最多取多少尽可能小的项的项数。那么输出i-getsum2(r)-1就是答案了。
#include <bits/stdc++.h>
using namespace std;
const int N=2e5+6;
typedef long long ll;
int n,m,t;
ll tree[N];
int tree2[N];
struct p{
int num,id;
}b[N];
int a[N],id[N];
bool cmp(p aa,p bb){
return aa.num<bb.num;
}
void add(int i,int u){
while(i<=n){
tree[i]+=u;
i+=i&(-i);
}
}
ll getsum(int k){
ll s=0;
while(k>0){
s=s+tree[k];
k-=k&(-k);
}
return s;
}
void add2(int i,int u){
while(i<=n){
tree2[i]+=u;
i+=i&(-i);
}
}
int getsum2(int k){
int s=0;
while(k>0){
s+=tree2[k];
k-=k&(-k);
}
return s;
}
int main(){
scanf("%d",&t);
while(t--){
ll k;
scanf("%d%lld",&n,&k);
memset(tree,0,sizeof(ll)*(n+5));
memset(tree2,0,sizeof(int)*(n+5));
for(int i=1;i<=n;i++)scanf("%d",&a[i]),b[i].num=a[i],b[i].id=i;
sort(b+1,b+n+1,cmp);
for(int i=1;i<=n;i++)id[b[i].id]=i;
for(int i=1;i<=n;i++){
int l=1,r=n,ans=0;
while(l<=r){
int mid=(l+r)>>1;
if(getsum(mid)+1ll*a[i]<=k){
ans=mid;
l=mid+1;
}
else r=mid-1;
}
if(ans==0)printf("%d ",i-1);
else printf("%d ",i-getsum2(ans)-1);
add(id[i],a[i]);
add2(id[i],1);
}
printf("\n");
}
return 0;
}