凸多边形的划分
题目传送门
题目描述
给定一个具有 N 个顶点的凸多边形,将顶点从 1 至 N 标号,每个顶点的权值都是一个正整数。
将这个凸多边形划分成 N−2 个互不相交的三角形,对于每个三角形,其三个顶点的权值相乘都可得到一个权值乘积,试求所有三角形的顶点权值乘积之和至少为多少。
输入格式
第一行包含整数 N,表示顶点数量。
第二行包含 N 个整数,依次为顶点 1 至顶点 N 的权值。
输出格式
输出仅一行,为所有三角形的顶点权值乘积之和的最小值。
数据范围
N≤50
数据保证所有顶点的权值都小于10^9
输入样例:
5
121 122 123 245 231
输出样例:
12214884
题解:
区间DP:
DP[ i ] [ j ]表示当底边为i ~ j时, 权值的最小值,枚举顶点k,因为不能相交,所以k属于[i + 1, j - 1],
这样我们就可以把图形划分为3个区间(i ~ k - 1), (k + 1, r) 和(i, j, k)这个三角形
所以d[ l ] [ r ] = min(d[ l ] [ r ], d[ l ] [ k - 1] + d[k + 1] [ r ] + w[l] * w[k] * w[r])
这道题要用高精度
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N = 55, M = 35;
int n, a[N];
ll f[N][N][M];
ll c[M];
void add(ll a[], ll b[]) //高精度加法
{
ll t = 0;
memset(c, 0, sizeof c);
for(int i = 0; i < M; i++){
t += a[i] + b[i];
c[i] = t % 10;
t /= 10;
}
memcpy(a, c, sizeof c);
}
void mul(ll a[], ll b){ //高精度乘法
memset(c, 0, sizeof c);
ll t = 0;
for(int i = 0; i < M; i++){
t += a[i] * b;
c[i] = t % 10;
t /= 10;
}
memcpy(a, c, sizeof c);
}
int cmp(ll a[], ll b[]) //高精度比较
{
for(int i = M - 1; i >= 0; i--){
if(a[i] > b[i])return 1;
else if(a[i] < b[i])return -1;
}
return 0;
}
void print(ll a[]) //高精度输出
{
int k = M - 1;
while(k > 0 && a[k] == 0)k--;
while(k >= 0){
cout << a[k];
k--;
}
cout << endl;
}
int main()
{
int n;
cin >> n;
for(int i = 1; i <= n; i++){
cin >> a[i];
}
ll temp[N];
for(int len = 3; len <= n; len++){ //枚举长度
for(int l = 1; l + len - 1 <= n; l++){ //枚举区间
int r = l + len - 1;
f[l][r][M - 1] = 1; //先初始化为最大值,让最高位等于1
for(int k = l + 1; k < r; k++){
memset(temp, 0, sizeof temp);
temp[0] = a[l];
mul(temp, a[k]);
mul(temp, a[r]);
add(temp, f[l][k]);
add(temp, f[k][r]);
if(cmp(f[l][r], temp) > 0){
memcpy(f[l][r], temp, sizeof temp);
}
}
}
}
print(f[1][n]);
return 0;
}