最小费用最大流模板

本文深入探讨了最小费用最大流算法及其在网络流问题中的应用,特别介绍了SPFA算法如何有效处理带有负权边的情况,通过反向边机制实现路径修正,确保找到最优解。文章提供了详细的代码实现,帮助读者理解算法细节。
摘要由CSDN通过智能技术生成

一篇很好的网络流博客:https://www.cnblogs.com/rmy020718/p/9546071.html 

一篇很好的最小费用最大流博客:https://blog.csdn.net/lym940928/article/details/90209172

 SPFA(可以判断负权回路)

 

反向边的费用要设置为负。

为什么会用到反向边呢?因为每次走的时候不能确定所走的路径就是最佳路径,所以需要后悔药——反向边,这样的话,即使走错了也可以通过走反向边纠正。如图,如果一开始走了黄色路径,那答案肯定错了,如果有了反向边,就可以通过蓝色路径纠正错误,走完蓝色路径之后,图中已经没有可走的正向边,程序结束。

也可以看出来,只有这种情况的边会用到反向边,而且反向边必定走两遍(如果只走一遍说明路径唯一,则不需要反向边),那么就可以采用把正向边费用存为正,反向边费用为负的方法将多算的费用抵消

#include <iostream>
#include <math.h>
#include <stdlib.h>
#include <cstring>
#include <stdio.h>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <string>

#define MAX 50500
#define INF 0x3f3f3f3f
#define EXP 1e-9

using namespace std;

typedef long long ll;

int n,m,s,t;

struct node{
    int nxt,to,w,f;
}e[MAX<<1];
int head[5050];
int tot;
ll cnt,ans;
int dis[5050];
int vis[5050];
int pre[5050];  //到达某点的最短边
queue<int >q;

inline void adde(int a,int b,int c,int d){
    e[tot]=(node){head[a],b,c,d};
    head[a]=tot++;
    e[tot]=(node){head[b],a,0,-d};
    head[b]=tot++;
}

inline bool SPFA(){
    memset(dis,0x3f,sizeof(dis));
    while(!q.empty())
        q.pop();
    dis[s]=0;
    q.push(s);
    vis[s]=1;
    while(!q.empty()){
        int x=q.front();
        q.pop();
        vis[x]=0;
        for(int i=head[x];i!=-1;i=e[i].nxt){
            int y=e[i].to;
            if(e[i].w>0&&dis[y]>dis[x]+e[i].f){
                dis[y]=dis[x]+e[i].f;
                pre[y]=i;
                if(!vis[y]){
                    vis[y]=1;
                    q.push(y);
                }
            }
        }
    }
    //printf("%d+++\n",dis[t]);
    if(dis[t]==INF)return 0;
    int flow=INF;
    for(int i=t;i!=s;i=e[pre[i]^1].to)
        flow=min(flow,e[pre[i]].w);
    cnt+=flow;
    ans+=flow*dis[t];
    for(int i=t;i!=s;i=e[pre[i]^1].to){
        e[pre[i]].w-=flow;
        e[pre[i]^1].w+=flow;
    }
    return 1;
}

int main(){
    scanf("%d%d%d%d",&n,&m,&s,&t);
    memset(head,-1,sizeof(head));
    memset(vis,0,sizeof(vis));
    ans=cnt=tot=0;
    int a,b,c,d;
    for(int i=0;i<m;i++){
        scanf("%d%d%d%d",&a,&b,&c,&d);
        adde(a,b,c,d);
    }
    while(SPFA());
    printf("%lld %lld\n",cnt,ans);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值