《量子张量网络机器学习》——量子力学初入门(二)

当概率成为复数——量子概率

我们都知道,现实世界所处的概率体系是经典概率体系,就像你玩原神抽卡,每次能抽中金色的概率总是0.06%,这都是固定好了的数值,而在量子力学中我们为什么又要弃经典概率体系而引入量子概率体系呢?接下来我们将探索这个问题。

首先,我们了解到复数的形式:a+bi,其中a、b都是实数,而i则是虚数单位(imaginary number),表示根号-1。

然后,我们使用一个抛硬币的实验来进一步解释:
我们抛出一枚硬币会以概率 p(1)出现正面, 以概率 p(0)出现反面, 并且 p(1)+p(0)=1。但是经典概率论存在着一个致命的漏洞——不是所有的事件的概率都是可直接观测的。这又是什么意思呢?打个比方说,你的女朋友明天会不会生气😡,你不可能知道,也没办法通过做实验来测量,但是这又确实是一个概率事件。正是因为这种不可直接观测性才让我们得以引入复数概率这一新形式。

我们并不是直接把硬币出现正面的概率 p(1)定义为复数 a+bi, 而是定义一种叫概率幅(又称为复数概率):
在这里插入图片描述
并且, 我们规定这个复数概率 ψ 可以按照下述规则转变为经典概率:在这里插入图片描述
接着,我们把复数概率(概率幅)引入抛硬币实验当中:
我们将硬币正面朝上用一个复数概率来表示,比如:
在这里插入图片描述
这个复数概率并不唯一,这只是其中一个。
然后, 在测量的瞬间, 我们定义复数概率会自动转变成概率, 即按照如下原则得到正面朝上的概率:在这里插入图片描述
那么,出现正面这个事件的概率,不仅仅可以使用p(1)来描述,而且还可以用复数概率来描述。并且这个复数概率并不唯一,有多个复数概率对应一个经典概率,就像这样子:
在这里插入图片描述
从复数概率到经典概率的映射是一个多对一的映射。
也就是说针对一个具体的概率值 P(X), 存在着无穷多个复数概率与其对应, 可以证明这群复数概率满足:在这里插入图片描述
(这个公式从数学角度我暂时还没有太好的理解,不过他的意思实质还是在说复数概率到经典概率是一对多的映射)

使用复数概率的好处:
①复数概率能比经典概率携带更多的信息
②复数概率具有更深的不可测量性,即使你对事件 X 进行了大量的
测量, 也仅仅能够得到复数概率的模的信息, 而不可能确定它的相角 θ。

按照前面将概率复数化的思想, 我们也可以为每个随机事件X=xi定义复数概率, 当复数概率为n时:
在这里插入图片描述
其实这里的复数概率向量和我们之前介绍的量子叠加态是非常相似的, 但是这个状态与经典概率的分布还是很不一样的。
比如:在经典概率中如果y一个系统的概率分布已经确定,那么我们可以说事件1发生的概率为p1,事件二为p2……而在量子系统中:
在这里插入图片描述
这是因为这些状态之间会发生相互干涉,我们之后将继续讨论这个相互干涉的问题。

接下来我们再次回到抛硬币实验中来
我们可以用经典概率分布:来表示一枚硬币处于正面(状态 |1> )和反面(状态 |0> )的概率各是 0. 5.在这里插入图片描述
也可以假设这枚硬币处于一个可以用复数概率描述的量子叠加态:在这里插入图片描述
不兼容属性(incompatible property)是量子概率——将概率论扩充到复数域中最特别的概念, 也是区别复数概率和经典概率的本质所在——所谓的一对不兼容属性就是指一个客观物体所具备的两种属性, 这两种属性不能同时得到确切的测量值
例如同一个粒子的位置和动量。
接下来举一个例子来详细阐述:
假设某一个系统具有属性 A, 属性 A 的取值可以有{U,D}(即上、下)两种可能. 另外, 该系统还具有属性 B, B 的取值可以由{L,R}(即左、右)两种可能。显然, 前两个事件张成了一个平面, 后两个事件又张成了另一张平面, 问题的关键是:当这两张平面重合在了一起会如何呢?在这里插入图片描述
对于同一个向量, 例如对图中的粗箭头来说, 它在第一个坐标系下可以表示为:在这里插入图片描述
那么, 在第二个坐标系下( L 和 R 构成的坐标系)的坐标就是:在这里插入图片描述
假设我们确定地知道 A 属性的取值为 U, 即发生 U 事件的概率为 1, 则在这里插入图片描述
同样的状态反映在 B 属性上就成了:在这里插入图片描述
这样, 只要θ 不是 0 或者 90 度的整数倍, 则我们必然得到 B 属性值是不确定的, 它会
以cosθ^2 的概率取值 L, 而以sinθ^2 的概率取值 R. 因此, 我们说 A 和 B 是一对不兼容的属性, 因为它们不能同时被测准.

为什么一定要复数概率?
也许你会争辩说, 在经典概率中, 我们也可以引入上述这些坐标系转换的概念. 我们也可以把经典概率表达成向量:在这里插入图片描述
然后, 同样把这个向量投影到蓝色的坐标系下, 得到新的向量表示:在这里插入图片描述
然而, 不幸的是, 这种坐标转换后得到的新“概率分布”却不总能满足概率分布的要求,比如:
在这里插入图片描述
只有当考虑复数概率的时候, 才能引入坐标转换的概念, 这是因为, 坐标转换本质上来讲是一种旋转操作, 而旋转操作会保持向量的模(即向量长度)不改变。正是因为概率幅而非概率具有这种旋转模不变的性质, 所以我们只能对复数概率进行坐标变换的定义.

量子概率体系

事件
定义 1(否运算):设事件 A对应的子空间为 LA, 那么 A事件则对应着垂直于LA 的子空间记做在这里插入图片描述
例如, 事件 A对应的子空间 LA 为三维空间中的一条直线l, 那么非 A 这个事件对应的子空间就是垂直于L的整个平面.

定义 2(与运算):设事件 A对应的子空间为 LA
, 事件 B对应的子空间为 LB那么事件 A且B对应的子空间就是这两个线性子空间的交集, 即在这里插入图片描述
定义 3(或运算):设事件 A对应的子空间 LA, 事件 B对应的子空间 LB那么事件 A或 B对应的子空间就是由这两个空间所张成的更大空间. 即:在这里插入图片描述
注意, 量子概率中的或运算与经典概率中事件或运算的本质是不同的, 它不是两个子空间的并集, 而是线性扩展 Span. 例如假如 LA 和 LB 分别是两条相交于一点的直线, 那么LA或B 就是这两条直线所张成的平面.

量子概率的运算性质大多与经典事件的运算性质相同, 但有一个本质的区别, 这就在于量子概率中的事件运算不一定满足分配率.在这里插入图片描述
**定义 4(互斥事件)**给定一组事件 1 2 ,A1、A2……An , 它们分别对应子空间L1、L2……Ln , 则这些子空间满足:在这里插入图片描述
一组互斥事件往往对应同一个属性取不同的属性值. 例如硬币只有正反两个可能取值. 有趣的是, 在经典概率中, 我们通常可以用一条线上的不同点对应不同取值, 例如一个人的身高有多种可能取值, 这样所有的身高可以表示为一条直线. 但是, 在量子概率中, 每一个属性值都对应着一条直线, 这样 n 组属性值就对应着 n 条直线, 并且这些属性值都是两两互斥的, 也就是说这些直线两两垂直, 并且所有这些可能的直线张成了一个 n 维希尔伯特空间.在这里插入图片描述

定义5(投影算子):每个事件 A都对应了一个投影算子PA,我们可以把状态向量 z 通过 PA 的作用投射到事件 A对应的子空间
LA 上,利用数学语言, 投影算子可以表达为:
在这里插入图片描述
在几何上, 投影算子就是求向量 z 到子空间 LA 上的投影向量, 因此, 这个投影就构成了一个向量:Pa|z>在这里插入图片描述
如果我们给 H 选定了一组基向量, 并且 z 也用基向量表示, 那么投影算子PA 就对应了一个矩阵称之为投影矩阵, 这个矩阵满足性质:
在这里插入图片描述
从几何意义上很容易理解这个性质:任何一个向量在事件 A对应的线性子空间上投影之后得到的向量再往 A上投影则必然保持不变.

有关测量:
在这里插入图片描述
定义 6(不相容属性对):量子概率与经典概率的最大不同之处,他们不能背同时测量。
假设属性M 有m 个不同的属性值{M1、M2……Mn}这些属性值张成了m 维线性空间 H , 并且每两个属性对所对应的子空间彼此垂直. 另有一个属性 N,这些属性值对应的子空间也张成一个m 维的线性空间 H’,如果 H =H’, 则称M 和 N 这两个属性不相容。

与不相容属性对相对应的就是相容属性对,他们可以被同时测量到。

总结与反思:这周由于临近毕业答辩,各种事务繁忙,学习量子张量网络机器学习的时间不多,并且学习时在复数概率上也花了很多时间才理解个七八成。希望自己能够继续坚持,奥里给~~!

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值