《基于张量网络的机器学习入门》学习笔记4

这篇博客介绍了如何将概率论拓展到复数域,探讨了量子概率中的复数概率幅,展示了从复数概率到经典概率的映射,并通过硬币投掷的例子说明了这一过程。文章还讨论了分布与向量的表示,事件与希尔伯特空间的关系,以及不兼容属性的概念,强调了复数概率在描述不兼容属性时的重要性。
摘要由CSDN通过智能技术生成

量子概率

将概率复数化

在经典概率中论中,我们将事件的概率视为一个可观测的量。例如,抛硬币时,会以 p ( 1 ) p(1) p(1)出现正面, p ( 0 ) p(0) p(0)出现反面,并且 p ( 0 ) + p ( 1 ) = 1 p(0)+p(1)=1 p(0)+p(1)=1,这是可以通过 N N N次重复实验来进行解释的,我们可以将 p ( 1 ) p(1) p(1)解释为现实事件中出现正面的次数占总的抛硬币次数的比例。

但是,在通常情况下,事件的概率并不是一个可观测的量,在每次抛硬币的过程中,我们实际上只能观测到正面或者反面,而无法观测概率 p ( 1 ) p(1) p(1)。经典概率论告诉我们,只有在进行了大量的重复独立实验的前提下,我们才能渐进地观测到某一个事件出现的概率。然而,在更多的无法进行重复实验的场合下(例如,明天是否会下雨),我们任可以定义概率,但是,这里的概率就是一个不可观测的量。

正是因为概率的这种不可观测性,我们“有机可乘”,将概率变为复数。当然,我们并不是简单的将概率 p ( 1 ) p(1) p(1)变成复数,而是定义了一种叫做概率幅(复数概率)的新量,即: ψ = a + b i \psi=a+bi ψ=a+bi,并且,我们规定这个复数概率 ψ \psi ψ可以按照下面的规则转变为经典概率:
p = ∣ ψ ∣ 2 = ψ ∗ ψ = ( a − b i ) ( a + b i ) = a 2 + b 2 p=|\psi|^2=\psi^*\psi=(a-bi)(a+bi)=a^2+b^2 p=ψ2=ψψ=(abi)(a+bi)=a2+b2
∣ ψ ∣ |\psi| ψ表示求复数的模, ψ ∗ \psi^* ψ表示 ψ \psi ψ的共轭复数。当然,如果要求经典概率,那么必须要求 a 2 + b 2 ∈ [ 0 , 1 ] a^2+b^2\in[0,1] a2+b2[0,1]

现在,我们假设每一次观测会发生 3 3 3件事:
首先,在观测前,假设硬币向上可以用一个复数概率表示,例如:
∣ ψ ⟩ = 1 2 + 1 2 i \mathinner{|\psi\rangle}=\frac{1}{2}+\frac{1}{2}i ψ=21+21i
然后,在测量的瞬间,我们定义复数概率会自动转变成概率,即按照如下原则得到正面朝上的概率:
p ( 1 ) = ∣ ψ ( 1 ) ∣ 2 = ( 1 2 ) 2 + ( 1 2 ) 2 = 1 2 p(1)=|\psi(1)|^2=(\frac{1}{2})^2+(\frac{1}{2})^2=\frac{1}{2} p(1)=ψ(1)2=(21)2+(21)2=21
最后,硬币会按照这个概率 p ( 1 ) p(1) p(1)随机地出现正面或反面,而且还可以用复数概率 ψ ( 1 ) \psi(1) ψ(1)进行描述,并且对任意一次随机试验的观测实际上是先从复数概率转变为经典概率,再由经典概率支配出现某一个观测值的比例。

因此,我们可以假设,再概率背后,还有一个更基本的复数概率制约着概率本身,正是因为概率本身是不能被直接观测到的量,所以我们再做一层复数概率的假设不会引起实质的困难。

现在,我们知道,某一个事件 X X X的经典概率与该事件的复数概率存在着对应关系: P ( X ) = ∣ ψ ( X ) ∣ 2 P(X)=|\psi(X)|^2 P(X)=ψ(X)2。但是,这个关系不是对称的。从复数概率到经典概率的映射是一个多对一的映射,即一个具体的概率值 P ( X ) P(X) P(X),存在着无穷多个复数概率与其对应,并且可以证明这群复数概率满足:
ψ ( X ) = P ( X ) ( cos ⁡ θ + i sin ⁡ θ ) = P ( X ) e x p ( i θ ) \psi(X)=\sqrt{P(X)}(\cos\theta+i\sin\theta)=\sqrt{P(X)}exp(i\theta) ψ(X)=P(X)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值