线性代数-MIT 18.06-2


本文在学习《麻省理工公开课 线性代数 MIT 18.06 Linear Algebra》总结反思形成

视频链接:MIT-B站视频

笔记部分:总结参考子实

6.列空间和零空间

对向量子空间 S S S T T T

  • S ∩ T S \cap T ST是向量子空间。
  • S ∪ T S \cup T ST不是向量子空间

构造子空间的两种方法

  1. 列空间

m × n m \times n m×n矩阵 A A A n × 1 n \times 1 n×1矩阵 x x x m × 1 m \times 1 m×1矩阵 b b b,运算 A x = b Ax=b Ax=b

[ a 11 a 12 ⋯ a 1 ( n − 1 ) a 1 n a 21 a 22 ⋯ a 2 ( n − 1 ) a 2 n ⋮ ⋮ ⋱ ⋮ ⋮ a m 1 a m 2 ⋯ a m ( n − 1 ) a m n ] ⋅ [ x 1 x 2 ⋮ x n − 1 x n ] = [ b 1 b 2 ⋮ b m ] \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1(n-1)} & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2(n-1)} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{m(n-1)} & a_{mn} \\ \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n-1} \\ x_{n} \\ \end{bmatrix} =\begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \\ \end{bmatrix} a11a21am1a12a22am2a1(n1)a2(n1)am(n1)a1na2namnx1x2xn1xn=b1b2bm

A A A的列向量生成的子空间为 A A A的列空间

A x = b Ax=b Ax=b有非零解当且仅当 b b b属于 A A A的列空间

  1. 零空间

A的零空间是 A x = 0 Ax=0 Ax=0 x x x的解组成的集合。

7.求解Ax=0、主变量、特解

核心算法

求解 A x = 0 Ax=0 Ax=0
A = 消 元 → U = 主 元 回 代 消 元 → R A= \underrightarrow{消元} U= \underrightarrow{主元回代消元} R A= U= R

举例: 3 × 4 3 \times 4 3×4矩阵
A = [ 1 2 2 2 2 4 6 8 3 6 8 10 ] A=\begin{bmatrix} 1 & 2 & 2 & 2\\ 2 & 4 & 6 & 8\\ 3 & 6 & 8 & 10\\ \end{bmatrix} A=1232462682810
A x = 0 Ax=0 Ax=0的特解:

  1. 找出主变量(pivot variable):

A = [ 1 2 2 2 2 4 6 8 3 6 8 10 ] 消 元 → [ 1 ‾ 2 2 2 0 0 2 ‾ 4 0 0 0 0 ] = U A= \begin{bmatrix} 1 & 2 & 2 & 2\\ 2 & 4 & 6 & 8\\ 3 & 6 & 8 & 10\\ \end{bmatrix} \underrightarrow{消元} \begin{bmatrix} \underline{1} & 2 & 2 & 2\\ 0 & 0 & \underline{2} & 4\\ 0 & 0 & 0 & 0\\ \end{bmatrix} =U A=1232462682810 100200220240=U

主变量(pivot variable,下划线元素)的个数为2,即矩阵 A A A的秩(rank)为2,即 r = 2 r=2 r=2

主变量所在的列为主列(pivot column),其余列为自由列(free column)。

自由列中的变量为自由变量(free variable),自由变量的个数为 n − r = 4 − 2 = 2 n-r=4-2=2 nr=42=2

  1. 通常,给自由列变量赋值,去求主列变量的值。

如令 x 2 = 1 , x 4 = 0 x_2=1, x_4=0 x2=1,x4=0求得特解
x = c 1 [ − 2 1 0 0 ] x=c_1\begin{bmatrix}-2\\1\\0\\0\\\end{bmatrix} x=c12100
再令 x 2 = 0 , x 4 = 1 x_2=0, x_4=1 x2=0,x4=1求得特解
x = c 2 [ 2 0 − 2 1 ] x=c_2\begin{bmatrix}2\\0\\-2\\1\\\end{bmatrix} x=c22021

  1. 进一步简化,即将 U U U矩阵化简为 R R R矩阵(Reduced row echelon form),即简化行阶梯形式(matlab使用指令rref)。

在简化行阶梯形式中,主元上下的元素都是 0 0 0
U = [ 1 ‾ 2 2 2 0 0 2 ‾ 4 0 0 0 0 ] 化 简 → [ 1 ‾ 2 0 − 2 0 0 1 ‾ 2 0 0 0 0 ] = R U= \begin{bmatrix} \underline{1} & 2 & 2 & 2\\ 0 & 0 & \underline{2} & 4\\ 0 & 0 & 0 & 0\\ \end{bmatrix} \underrightarrow{化简} \begin{bmatrix} \underline{1} & 2 & 0 & -2\\ 0 & 0 & \underline{1} & 2\\ 0 & 0 & 0 & 0\\ \end{bmatrix} =R U=100200220240 100200010220=R

R R R矩阵中的主变量放在一起,自由变量放在一起(列交换),得到

R = [ 1 ‾ 2 0 − 2 0 0 1 ‾ 2 0 0 0 0 ] 列 交 换 → [ 1 0 2 − 2 0 1 0 2 0 0 0 0 ] = [ I F 0 0 ] ,其中 I 为单位矩阵, F 为自由变量组成的矩阵 R=\begin{bmatrix} \underline{1} & 2 & 0 & -2\\ 0 & 0 & \underline{1} & 2\\ 0 & 0 & 0 & 0\\ \end{bmatrix} \underrightarrow{列交换} \left[ \begin{array}{c c | c c} 1 & 0 & 2 & -2\\ 0 & 1 & 0 & 2\\ \hline 0 & 0 & 0 & 0\\ \end{array} \right] =\begin{bmatrix} I & F \\ 0 & 0 \\ \end{bmatrix} \textrm{,其中}I\textrm{为单位矩阵,}F\textrm{为自由变量组成的矩阵} R=100200010220 100010200220=[I0F0],其中I为单位矩阵,F为自由变量组成的矩阵

特解的矩阵表达

计算零空间矩阵 N N N(nullspace matrix),其列为特解,有 R N = 0 RN=0 RN=0
x p i v o t = − F x f r e e [ I F ] [ x p i v o t x f r e e ] = 0 N = [ − F I ] x_{pivot}=-Fx_{free} \\ \begin{bmatrix} I & F \\ \end{bmatrix} \begin{bmatrix} x_{pivot} \\ x_{free} \\ \end{bmatrix}=0 \\ N=\begin{bmatrix} -F \\ I \\ \end{bmatrix} xpivot=Fxfree[IF][xpivotxfree]=0N=[FI]

8.求解Ax=b可解性和解的结构

可解性

方程 A x = b Ax=b Ax=b有解(solvability condition on b)

  • 描述1:当且仅当 b b b属于 A A A的列空间时。
  • 描述2:如果 A A A的各行线性组合得到 0 0 0行,则 b b b端分量做同样的线性组合,结果也为 0 0 0时,方程才有解。

求解 A x = b Ax=b Ax=b

因为求解过程已经掌握,这里略, A x = b Ax=b Ax=b解集为其特解加上零空间

{ A x p = b A x n = 0 两 式 相 加 → A ( x p + x n ) = b \left \{ \begin{array}{l} A x_{p}=b \\ A x_{n}=0 \end{array} \quad \underrightarrow{两式相加} \quad A\left(x_{p}+x_{n}\right)=b\right. {Axp=bAxn=0 A(xp+xn)=b

对本例有:

x c o m p l e t e = [ − 2 0 3 2 0 ] + c 1 [ − 2 1 0 0 ] + c 2 [ 2 0 − 2 1 ] x_{complete}= \begin{bmatrix} -2 \\ 0 \\ \frac{3}{2} \\ 0 \end{bmatrix} + c_1\begin{bmatrix}-2\\1\\0\\0\\\end{bmatrix} + c_2\begin{bmatrix}2\\0\\-2\\1\\\end{bmatrix} xcomplete=20230+c12100+c22021

解的结构小结

总结:

r = m = n r = n < m r = m < n r < m , r < n R = I R = [ I 0 ] R = [ I F ] R = [ I F 0 0 ] 1   s o l u t i o n 0   o r   1   s o l u t i o n ∞   s o l u t i o n 0   o r   ∞   s o l u t i o n \begin{array}{c|c|c|c}r=m=n&r=n\lt m&r=m\lt n&r\lt m,r\lt n\\R=I&R=\begin{bmatrix}I\\0\end{bmatrix}&R=\begin{bmatrix}I&F\end{bmatrix}&R=\begin{bmatrix}I&F\\0&0\end{bmatrix}\\1\ solution&0\ or\ 1\ solution&\infty\ solution&0\ or\ \infty\ solution\end{array} r=m=nR=I1 solutionr=n<mR=[I0]0 or 1 solutionr=m<nR=[IF] solutionr<m,r<nR=[I0F0]0 or  solution

9.线性相关性、基、维数

线性相关

v 1 ,   v 2 ,   ⋯   ,   v n v_1,\ v_2,\ \cdots,\ v_n v1, v2, , vn m × n m\times n m×n矩阵 A A A的列向量:

如果 A A A零空间中有且仅有 0 0 0向量,则各向量线性无关, r a n k ( A ) = n rank(A)=n rank(A)=n

如果存在非零向量 c c c使得 A c = 0 Ac=0 Ac=0,则存在线性相关向量, r a n k ( A ) < n rank(A)\lt n rank(A)<n

向量空间 S S S中的一组基(basis),具有两个性质:

  1. 他们线性无关;
  2. 他们可以生成 S S S

对于向量空间 R n \mathbb{R}^n Rn,如果 n n n个向量组成的矩阵为可逆矩阵,则这 n n n个向量为该空间的一组基,而数字 n n n就是该空间的维数(dimension)。

维数

这里教授重点讲解了两个关系式

  1. 列空间维数 d i m C ( A ) = r a n k ( A ) = 列 主 元 个 数 dim C(A)=rank(A)=列主元个数 dimC(A)=rank(A)=
  2. 零空间维数 d i m N ( A ) = n − r a n k ( A ) = 自 由 变 量 个 数 dim N(A)=n-rank(A)=自由变量个数 dimN(A)=nrank(A)=

举例:
A = [ 1 2 3 1 1 1 2 1 1 2 3 1 ] A= \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & 1 \\ \end{bmatrix} A=111212323111
A的列向量线性相关,其零空间中有非零向量,

所以 2 = r a n k ( A ) = 主 元 存 在 的 列 数 = 列 空 间 维 数 2=rank(A)=主元存在的列数=列空间维数 2=rank(A)==

A x = 0 Ax=0 Ax=0的有两个特解,如
x 1 = [ − 1 − 1 1 0 ] , x 2 = [ − 1 0 0 1 ] x_1= \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \\ \end{bmatrix}, x_2= \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \\ \end{bmatrix} x1=1110,x2=1001

所以特解的个数就是自由变量的个数就是零空间维数

10.四个基本子空间

四个基本子空间

对于 m × n m \times n m×n矩阵 A A A r a n k ( A ) = r rank(A)=r rank(A)=r有:

  • 行空间 C ( A T ) ∈ R n , d i m C ( A T ) = r C(A^T) \in \mathbb{R}^n, dim C(A^T)=r C(AT)Rn,dimC(AT)=r,基见例1。

  • 零空间 N ( A ) ∈ R n , d i m N ( A ) = n − r N(A) \in \mathbb{R}^n, dim N(A)=n-r N(A)Rn,dimN(A)=nr,自由元所在的列即可组成零空间的一组基。

  • 列空间 C ( A ) ∈ R m , d i m C ( A ) = r C(A) \in \mathbb{R}^m, dim C(A)=r C(A)Rm,dimC(A)=r,主元所在的列即可组成列空间的一组基。

  • 左零空间 N ( A T ) ∈ R m , d i m N ( A T ) = m − r N(A^T) \in \mathbb{R}^m, dim N(A^T)=m-r N(AT)Rm,dimN(AT)=mr,基见例2。

例1:行空间的基

A = [ 1 2 3 1 1 1 2 1 1 2 3 1 ] 消 元 、 化 简 → [ 1 0 1 1 0 1 1 0 0 0 0 0 ] = R A= \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & 1 \\ \end{bmatrix} \underrightarrow{消元、化简} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} =R A=111212323111 100010110100=R

  • 由于我们做了行变换,所以A的列空间受到影响, C ( R ) ≠ C ( A ) C(R) \neq C(A) C(R)=C(A)

  • 行变换并不影响行空间,所以可以在 R R R中看出前两行就是行空间的一组基。

  • 所以,可以得出无论对于矩阵 A A A还是 R R R,其行空间的一组基,可以由 R R R矩阵的前 r r r行向量组成(这里的 R R R就是第七讲提到的简化行阶梯形式)。

例2:左零空间的基
  1. 命名来源

A T y = 0 → ( A T y ) T = 0 T → y T A = 0 T A^Ty=0 \rightarrow (A^Ty)^T=0^T\rightarrow y^TA=0^T ATy=0(ATy)T=0TyTA=0T,因此得名。

  1. 基本思路
    采用Gauss-Jordan消元,将增广矩阵 [ A m × n I m × m ] \left[\begin{array}{c|c}A_{m \times n} & I_{m \times m}\end{array}\right] [Am×nIm×m] A A A的部分划为简化行阶梯形式 [ R m × n E m × m ] \left[\begin{array}{c|c}R_{m \times n} & E_{m \times m}\end{array}\right] [Rm×nEm×m],此时矩阵 E E E会将所有的行变换记录下来。

  2. 操作实例

本例中

[ A m × n I m × m ] = [ 1 2 3 1 1 0 0 1 1 2 1 0 1 0 1 2 3 1 0 0 1 ] 消 元 、 化 简 → [ 1 0 1 1 − 1 2 0 0 1 1 0 1 − 1 0 0 0 0 0 − 1 0 1 ] = [ R m × n E m × m ] \left[\begin{array}{c|c}A_{m \times n} & I_{m \times m}\end{array}\right]= \left[ \begin{array} {c c c c|c c c} 1 & 2 & 3 & 1 & 1 & 0 & 0 \\ 1 & 1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 2 & 3 & 1 & 0 & 0 & 1 \\ \end{array} \right] \underrightarrow{消元、化简} \left[ \begin{array} {c c c c|c c c} 1 & 0 & 1 & 1 & -1 & 2 & 0 \\ 0 & 1 & 1 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 \\ \end{array} \right] =\left[\begin{array}{c|c}R_{m \times n} & E_{m \times m}\end{array}\right] [Am×nIm×m]=111212323111100010001 100010110100111210001=[Rm×nEm×m]

E A = [ − 1 2 0 1 − 1 0 − 1 0 1 ] ⋅ [ 1 2 3 1 1 1 2 1 1 2 3 1 ] = [ 1 0 1 1 0 1 1 0 0 0 0 0 ] = R EA= \begin{bmatrix} -1 & 2 & 0 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \\ \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & 1 \\ \end{bmatrix} =\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} =R EA=111210001111212323111=100010110100=R

  • 很明显,式中 E E E的最后一行对 A A A的行做线性组合后,得到 R R R的最后一行,即 0 0 0向量,也就是 y T A = 0 T y^TA=0^T yTA=0T

  • 所以很明显这里的左零空间的维数(dimension)是1维。

矩阵空间(补充)

最后,引入矩阵空间的概念,矩阵可以同向量一样,做求和、数乘。

举例,设所有 3 × 3 3 \times 3 3×3矩阵组成的矩阵空间为 M M M。则上三角矩阵、对称矩阵、对角矩阵(前两者的交集)。

观察一下对角矩阵,如果取
[ 1 0 0 0 0 0 0 0 0 ] [ 1 0 0 0 3 0 0 0 0 ] [ 0 0 0 0 0 0 0 0 7 ] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 7 \\ \end{bmatrix} 100000000100030000000000007

  • 所以很明显这里的左零空间的维数(dimension)是1维。

矩阵空间(补充)

最后,引入矩阵空间的概念,从 R n − > R n × n R^{n}->R^{n\times n} Rn>Rn×n,矩阵可以同向量一样,做求和、数乘。

举例,设所有 3 × 3 3 \times 3 3×3矩阵组成的矩阵空间为 M M M。则上三角矩阵、对称矩阵、对角矩阵(前两者的交集)。

观察一下对角矩阵,如果取
[ 1 0 0 0 0 0 0 0 0 ] [ 1 0 0 0 3 0 0 0 0 ] [ 0 0 0 0 0 0 0 0 7 ] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 7 \\ \end{bmatrix} 100000000100030000000000007
可以发现,任何三阶对角矩阵均可用这三个矩阵的线性组合生成,因此,他们生成了三阶对角矩阵空间,即这三个矩阵是三阶对角矩阵空间的一组基。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

儒雅的钓翁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值