【leetcode/二叉树】二叉树的最大深度(自底向上的遍历)

该博客主要介绍了如何通过自底向上的遍历方法解决求解二叉树最大深度的问题。从问题描述开始,博主解释了基本思路,即通过获取叶子节点的层数来确定整棵树的深度,并且强调了自底向上的遍历优于自顶向下的方法。随后,博主提供了AC代码,并提醒读者注意特殊情况,如空节点的处理,以展示理论与实践的差异。
摘要由CSDN通过智能技术生成

问题描述:

二叉树的最大深度

给定一个二叉树,找出其最大深度。

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

说明: 叶子节点是指没有子节点的节点。

示例:
给定二叉树 [3,9,20,null,null,15,7]

    3
   / \
  9  20
    /  \
   15   7

返回它的最大深度 3 。

基本思路:

如果我能够知道叶子节点自底向上的层数,我就能确定我当前节点的层数。这样遍历到根节点的时候我就知道了它的深度了。

由于是由子节点的信息得到我现在节点的信息,所以这里应当采用自底向上的思想

当然用自顶向下的思想也是可以做的,只不过leetcode里给出的格式是要返回一个int值,所以我采用自底向上的方法。

AC代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    int maxDepth(TreeNode* root) {
      // 注意这一点已经不是某个叶子节点了,而是一个空的节点
      // 在这里是
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值