Fashion-CNN中遇到的一些问题

本文总结了在使用Fashion-CNN时遇到的四个问题:1) 将灰度图片替换为RGB后的通道匹配问题;2) CUDA显存不足的处理;3) 矩阵维数不匹配的解决办法;4) 求梯度时的RuntimeError。针对这些问题,提出了相应的解决方案,包括调整输入通道、减少batch_size、检查层间维度匹配以及确保正确地求梯度。
摘要由CSDN通过智能技术生成

Fashion CNN基础教程:https://www.kaggle.com/pankajj/fashion-mnist-with-pytorch-93-accuracy/notebook

 

1.教程中灰度图片替换为RGB图片后遇到的问题:

Given groups=1, weight of size [32, 1, 3, 3], expected input[10000, 3, 32, 32] to have 1 channels, but got 3 channels instead

网上提供了很多方法,比如将RGB图片转换为灰度图(笑),或者在读入时选择convert(‘RGB') (读入方法不同所以没有尝试这种方法,但分析觉得治标不治本)

目前认为最有效的方法是将二维卷积层的输入通道数目从1增加到相应的数量(这里为3)(如下)。

不知道为什么没有找到相关记录,可能是进行到后面就自然解决了?          

 nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, padding=1)

2.CUDA显存不够

RuntimeError: CUDA out of memory. Tried to allocate 1.22 GiB (GPU 0; 2.00 GiB total capacity; 153.3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值