中国石油大学ACM俱乐部开放训练赛

中国石油大学ACM俱乐部开放训练赛

A. sciorz画画(凸多边形最优三角型剖分,区间DP)

  • 题目

    多边形的每个顶点都有一个权值a[i],要用n-3条不相交的线将这个n边形分割成n-2个三角形,每个三角形的价值等于三个顶点权值的乘积。
    问怎么分隔才能使得n-2个三角形的价值和最大

  • 输入

    2		1<=t<=100
    3		1<=n<=100
    1 2 3 	1<=a[i]<=100
    4
    1 2 3 4
    
  • 输出

    Case #1: 6
    Case #2: 32
    

dp[i][j]表示从第i个到第j个点的最优剖分答案

  1. j=ij=i+1时,无法构成三角形,dp[i][j]=0
  2. j>=i+2时,在ij之间取一个分割点k。此时多边形被划分为3部分:ik部分,kj部分,三角形i,j,k。其中ik部分和kj部分都是子问题,可以利用之前求出的结果

d p [ i ] [ j ] = max ⁡ k = i + 1 j − 1 { d p [ i ] [ j ] , d p [ i ] [ k ] + d p [ k ] [ j ] + c o s t ( i , j , k ) } dp[i][j]=\max_{k=i+1}^{j-1}\lbrace dp[i][j],dp[i][k]+dp[k][j]+cost(i,j,k)\rbrace dp[i][j]=k=i+1maxj1{dp[i][j],dp[i][k]+dp[k][j]+cost(i,j,k)}

注意:因为区间DP需要用到子区间的结果,所以区间需要由小到大,因而区间起点i是从n-1到1

#include <bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
#define endl '\n'
typedef long long ll;
const int maxn = 100 + 10;
int n, a[maxn];
int dp[maxn][maxn];
void solve()
{
	mem(dp, 0);
	for (int i = n-1; i >=1; i--) {	//由小到大
		for (int j = i + 2; j <= n; j++) {
			for (int k = i + 1; k <= j - 1; k++) {
				dp[i][j] = max(dp[i][j], dp[i][k] + dp[k][j] + a[i] * a[j] * a[k]);
			}
		}
	}
	cout << dp[1][n] << endl;
}
int main()
{
	ios::sync_with_stdio(0), cin.tie(0);
	int t;
	cin >> t;
	for (int i = 1; i <= t; i++) {
		cin >> n; 
		cout << "Case #" << i << ": ";
		for (int j = 1; j <= n; j++) {
			cin >> a[j];
		}
		solve();
	}
}

B. 奎奎发红包(贪心)

  • 题目

    奎奎给n个人发红包,每个人都两个值v[i]t[i]t[i]代表给第i个人发红包所需的时间。
    每个人的红包大小为v[i]*tt表示这个人的等待时间(包括自己所需时间)。
    问最少花多少钱能满足每一个人?

  • 输入

    4
    1 4
    2 3
    3 2
    4 1
    
  • 输出

    35
    

考虑相邻的两个人a,b,如果a排在前面,代价为 a . v ∗ a . t + b . v ∗ ( a . t + b . t ) a.v*a.t+b.v*(a.t+b.t) a.va.t+b.v(a.t+b.t);如果b排在前面,代价为 b . v ∗ b . t + a . v ∗ ( a . t + b . t ) b.v*b.t+a.v*(a.t+b.t) b.vb.t+a.v(a.t+b.t)。对两式进行化简得:如果 a . t ∗ b . v < a . v ∗ b . t a.t*b.v<a.v*b.t a.tb.v<a.vb.t,则a应该排在前面,也就是 a . t a . v < b . t b . v \frac{a.t}{a.v}<\frac{b.t}{b.v} a.va.t<b.vb.t
所以按照 t v \frac{t}{v} vt的排序,但需要特别考虑0的情况,因为v=0时不用花钱,所以可以放到最后不管。

#include <bits/stdc++.h>
using namespace std;
#define mem(a, b) memset(a, b, sizeof(a))
#define endl '\n'
typedef long long ll;
const int maxn = 1e5 + 10;
struct node {
    int v, t;
    bool operator<(const node b) const
    {
        return 1.0 * this->t / this->v < 1.0 * b.t / b.v;
    }
} a[maxn];
int n, t, v, num;
bool cmp(node a, node b)
{
    return 1.0 * a.t / a.v < 1.0 * b.t / b.v;
}
int main()
{
    ios::sync_with_stdio(0), cin.tie(0);
    cin >> n;
    for (int i = 1; i <= n; i++) {
        cin >> v >> t;
        if (v != 0) {
            a[i].v = v;
            a[i].t = t;
            num++;
        }
    }
    sort(a + 1, a + 1 + num);
    ll ans = 0, sum = 0;
    for (int i = 1; i <= num; i++) {
        sum += a[i].t;
        ans += a[i].v * sum;
    }
    cout << ans << endl;
}

C. 关于我转生变成史莱姆这档事(DFS)

  • 题目:

    史莱姆要吃掉总量为S的魔素,并且每一天吃掉的魔素都要为前一天的2~9倍(整数倍)
    求最短的天数并且要恰好吃完所有的魔素

  • 输入:

    571
    
  • 输出:

    5
    

将题目进行用表达式表达:
中国石油大学ACM俱乐部开放训练赛C
因此可以进行暴搜,将括号一层一层拆开,只要每一层都能满足整除关系即可。
如:先对 s s s进行因数分解,得到 a 1 a_1 a1的值,然后将括号打开,令 s ′ = s a 1 − 1 s'=\frac{s}{a_1}-1 s=a1s1
之后的递归只需要考虑2~9是否是 s ′ s' s的因子,如果是的话就可以再次拆开括号,继续递归 s ′ ′ s'' s

#include <bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
#define endl '\n'
typedef long long ll;
const int INF = 1 << 30;
int s, ans;
int dfs(int s)
{
	if (s >= 2 && s <= 9) return 1;
	int ans = INF;
	for (int i = 2; i <= 9; i++) {
		if (s % i == 0) {
			ans = min(ans, dfs(s / i - 1) + 1);
		}
	}
	return ans;
}
int main()
{
	ios::sync_with_stdio(0), cin.tie(0);
	cin >> s;
	ans = INF;
	for (int i = 1; i * i <= s; i++) {
		if (s % i == 0) {
			ans = min(ans, dfs(s / i - 1) + 1);
			if (i != s / i) {
				ans = min(ans, dfs(i - 1) + 1);
			}
		}
	}
	cout << (ans == INF ? -1 : ans) << endl;
}

F. 求和(矩阵构造+矩阵快速幂)

  • 题目

    已知An*n矩阵,求 S = A + A 2 + A 3 + ⋯ + A m S=A+A^2+A^3+\dots+A^m S=A+A2+A3++Am中每一项对1e9+7取模后的值

  • 输入

    1 2019
    1
    
  • 输出

    2019
    

可以构造一个矩阵 B = [ A A 0 E ] B=\begin{bmatrix}A & A\\0 & E\\ \end{bmatrix} B=[A0AE]

可以发现: B 2 = [ A 2 A + A 2 0 E ] B^2=\begin{bmatrix}A^2 & A+A^2\\0 & E\\ \end{bmatrix} B2=[A20A+A2E]

B 3 = [ A 3 A + A 2 + A 3 0 E ] B^3=\begin{bmatrix}A^3 & A+A^2+A^3\\0 & E\\ \end{bmatrix} B3=[A30A+A2+A3E]

B m = [ A m A + A 2 + A 3 + ⋯ + A m 0 E ] B^m=\begin{bmatrix}A^m & A+A^2+A^3+\dots+A^m\\0 & E\\ \end{bmatrix} Bm=[Am0A+A2+A3++AmE]

所以只需求出 B m B^m Bm即可

#include <bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
#define endl '\n'
typedef long long ll;
const int MOD = 1000000007;
const int maxn = 60 + 10;
int n, m;
struct Matrix {
	ll m[maxn][maxn];
	Matrix() { memset(m, 0, sizeof(m)); }
} a, b, ans;
Matrix Multi(Matrix a, Matrix b) //矩阵乘法
{
	Matrix res;
	for (int i = 0; i < maxn; i++) {
		for (int j = 0; j < maxn; j++) {
			for (int k = 0; k < maxn; k++) {
				res.m[i][j] = (res.m[i][j] + a.m[i][k] * b.m[k][j]) % MOD;
			}
		}
	}
	return res;
}
Matrix fastm(Matrix a, int n) //矩阵快速幂
{
	Matrix res;
	for (int i = 0; i < maxn; i++) { //初始化为单位矩阵
		res.m[i][i] = 1;
	}
	while (n) {
		if (n & 1) {
			res = Multi(res, a);
		}
		a = Multi(a, a);
		n >>= 1;
	}
	return res;
}
int main()
{
	ios::sync_with_stdio(0), cin.tie(0);
	cin >> n >> m;
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			cin >> a.m[i][j];
			b.m[i][j] = a.m[i][j];
		}
	}
	//构造b
	for (int i = 1; i <= n; i++) {
		for (int j = n + 1; j <= 2 * n; j++) {
			b.m[i][j] = a.m[i][j - n];
		}
	}
	for (int i = n + 1; i <= 2 * n; i++) {
		b.m[i][i]=1;
	}
	ans = fastm(b, m);
	for (int i = 1; i <= n; i++) {
		for (int j = n + 1; j <= 2 * n; j++) {
			cout << ans.m[i][j] % MOD << " ";
		}
		cout << endl;
	}
}

K. 数学问题(组合数预处理+二维前缀和)

  • 题目

    给出整数n,m,g,求有多少对(i,j)满足g整除 C i j C_i^{j} Cij,其中 0 ≤ i ≤ n , 0 ≤ j ≤ min ⁡ ( i , m ) 0\le i\le n,0\le j\le \min (i,m) 0in,0jmin(i,m)

  • 输入

    1	//T组数据
    4	//g
    5 4	//n,m
    
  • 输出

    2
    

判断g是否整除 C i j C_i^{j} Cij,就是判断 C i j   %   g C_i^{j}\,\%\,g Cij%g是否为0。

对于组合数的计算,可以依据组合数的递推公式, C i j = C i − 1 j − 1 + C i j − 1 C_i^j=C_{i-1}^{j-1}+C_i^{j-1} Cij=Ci1j1+Cij1
然后对 C i j C_i^j Cij进行取模,就转化为 C i j = = 0 C_i^j==0 Cij==0时满足条件

但组数有1e4,n,m数据范围为2e3,所以可以利用二位前缀和 s [ i ] [ j ] = s [ i − 1 ] [ j ] + s [ i ] [ j − 1 ] − s [ i − 1 ] [ j − 1 ] s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1] s[i][j]=s[i1][j]+s[i][j1]s[i1][j1]将范围内所有整数对的结果进行预处理,每次的查询就优化到了O(1)

#include <bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
#define endl '\n'
typedef long long ll;
const int maxn = 2e3 + 10;
int n, m, g;
ll c[maxn][maxn], s[maxn][maxn];
void solve()
{
    //预处理组合数
	c[1][1] = 1;
	for (int i = 0; i <= 2000; i++) c[i][0] = 1;
	for (int i = 2; i <= 2000; i++) {
		for (int j = 1; j <= i; j++) {
			c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % g;
		}
	}
    //二位前缀和统计所有整数对的答案
	for (int i = 2; i <= 2000; i++) {
		for (int j = 1; j <= i; j++) {
			s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1];
			if (c[i][j] == 0) s[i][j] += 1;
		}
        //考虑m大于n的情况
		for (int j = i + 1; j <= 2000; j++) {
			s[i][j] = s[i][i];
		}
	}
}
int main()
{
	ios::sync_with_stdio(0), cin.tie(0);
	int t;
	cin >> t >> g;
	solve();
	for (int i = 1; i <= t; i++) {
		cin >> n >> m;
		cout << s[n][m] << endl;
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值