[BZOJ3693][线段树][Hall定理]圆桌会议

BZOJ3693

就是要判断有没有完美匹配,用Hall定理可知对于任意 l [ i ] , r [ j ] l[i],r[j] l[i],r[j],若某一个 l [ k ] , r [ k ] l[k],r[k] l[k],r[k]被其包含,则对应的 a [ k ] a[k] a[k]之和需要小于等于 r [ j ] − l [ i ] + 1 r[j]-l[i]+1 r[j]l[i]+1(其实用脑子想也想的出来)
如果不是环的话我们将操作按 r r r排序,把 l l l离散化,从左到右做
要求 ∑ a [ k ] ≤ r [ i ] − l [ j ] + 1 \sum a[k]\le r[i]-l[j]+1 a[k]r[i]l[j]+1,即是 ∑ a [ k ] + l [ j ] − 1 ≤ r [ i ] \sum a[k] +l[j]-1\le r[i] a[k]+l[j]1r[i],所以统计每个点的 ∑ a [ k ] + l [ j ] + 1 \sum a[k]+l[j]+1 a[k]+l[j]+1,每扫进来一个 r [ k ] , l [ k ] r[k],l[k] r[k],l[k] 1 − l [ k ] 1 - l[k] 1l[k]的所有 s u m sum sum会加上 a [ k ] a[k] a[k],用一个线段树即可维护
然后把环拆了复制一遍就做完了,注意特判

Code:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
inline int read(){
	int res=0,f=1;char ch=getchar();
	while(!isdigit(ch)) {if(ch=='-') f=-f;ch=getchar();}
	while(isdigit(ch)) {res=(res<<1)+(res<<3)+(ch^48);ch=getchar();}
	return res*f;
}
const int N=2e5+5;
int n,m,a[N];
int cnt,tot;
namespace segtree{
	struct seg{int l,r,mx,add;}tr[N<<2];
	#define ls tr[k].l
	#define rs tr[k].r
	#define mid (ls+rs>>1)
	inline void pushup(int k){tr[k].mx=max(tr[k<<1].mx,tr[k<<1|1].mx);}
	inline void pushadd(int k,int v){tr[k].mx+=v;tr[k].add+=v;}
	inline void pushdown(int k){
		if(tr[k].add){
			pushadd(k<<1,tr[k].add),pushadd(k<<1|1,tr[k].add);
			tr[k].add=0;
		}
	}
	void build(int k,int l,int r){
		ls=l,rs=r,tr[k].add=0;
		if(l==r) {tr[k].mx=a[l]-1;return;}
		build(k<<1,l,mid);build(k<<1|1,mid+1,r);
		pushup(k);
	}
	void modify(int k,int ql,int qr,int val){
		if(rs<ql || ls>qr) return;
		if(ql<=ls && rs<=qr) return pushadd(k,val);
		pushdown(k);
		if(qr<=mid) modify(k<<1,ql,qr,val);
		else if(ql>mid) modify(k<<1|1,ql,qr,val);
		else modify(k<<1,ql,mid,val),modify(k<<1|1,mid+1,qr,val);
		pushup(k);
	}
	int query(int k,int ql,int qr){
		if(rs<ql || ls>qr) return 0;
		if(ql<=ls && rs<=qr) return tr[k].mx;
		pushdown(k);
		if(qr<=mid) return query(k<<1,ql,qr);
		else if(ql>mid) return query(k<<1|1,ql,qr);
		else return max(query(k<<1,ql,mid),query(k<<1|1,mid+1,qr));
	}
}
using namespace segtree;
struct Q{
	int l,r,val;
	Q(){}
	Q(int _l,int _r,int _val):l(_l),r(_r),val(_val){}
	friend inline bool operator < (const Q &a,const Q &b){return a.r<b.r;}
}q[N];
int main(){
	int t=read();
	while(t--){
		cnt=tot=0;
		n=read();m=read();ll sum=0;
		for(int l,r,val,i=1;i<=n;i++){
			l=read();a[++tot]=l;
			r=read();val=read();
			sum+=val;
			if(l<=r) q[++cnt]=Q(l,r,val),q[++cnt]=Q(l+m,r+m,val),a[++tot]=l+m;
			else q[++cnt]=Q(l,r+m,val);
		}
		if(sum>m) puts("No");
		else{
			sort(q+1,q+cnt+1);
			sort(a+1,a+tot+1);
			n=unique(a+1,a+tot+1)-a-1;
			for(int i=1;i<=cnt;i++) q[i].l=lower_bound(a+1,a+n+1,q[i].l)-a;
			build(1,1,n);int ans=1;
			for(int i=1;i<=cnt;i++){
				modify(1,1,q[i].l,q[i].val);
				if(query(1,1,q[i].l)>q[i].r) {ans=0;break;}
			}
			puts(ans?"Yes":"No");
		}
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值