[BZOJ4555][斯特林数][NTT]TJOI && HEOI2016:求和

BZOJ4555

要求 ∑ i = 0 n ∑ j = 0 i S ( i , j ) ∗ 2 j ∗ j ! \sum_{i=0}^n{\sum_{j=0}^i}S(i,j)*2^j*j! i=0nj=0iS(i,j)2jj!
∑ i = 0 n ∑ j = 0 n S ( i , j ) ∗ 2 j ∗ j ! \sum_{i=0}^n{\sum_{j=0}^n}S(i,j)*2^j*j! i=0nj=0nS(i,j)2jj!
根据第二类斯特林数的展开式
S ( i , j ) = ∑ k = 0 j ( − 1 ) ( j − k ) C j k k i j ! S(i,j)=\frac{\sum_{k=0}^j{(-1)^{(j-k)}}C_j^kk^i}{j!} S(i,j)=j!k=0j(1)(jk)Cjkki
则原式 = ∑ i = 0 n ∑ j = 0 n ∑ k = 0 j ( − 1 ) ( j − k ) C j k k i ∗ 2 j =\sum_{i=0}^n{\sum_{j=0}^n}\sum_{k=0}^j{(-1)^{(j-k)}}C_j^kk^i*2^j =i=0nj=0nk=0j(1)(jk)Cjkki2j
= ∑ i = 0 n ∑ j = 0 i ∑ k = 0 j ( − 1 ) j − k j ! k ! ( j − k ) ! k i ∗ 2 j =\sum_{i=0}^n{\sum_{j=0}^i}\sum_{k=0}^j{(-1)^{j-k}}\frac{j!}{k!(j-k)!}k^i*2^j =i=0nj=0ik=0j(1)jkk!(jk)!j!ki2j
交换枚举顺序
= ∑ j = 0 n 2 j ∗ j ! ∑ k = 0 j ( − 1 ) j − k k ! ( j − k ) ! ∑ i = 0 n k i =\sum_{j=0}^n2^j*j!\sum_{k=0}^j\frac{(-1)^{j-k}}{k!(j-k)!}\sum_{i=0}^nk^i =j=0n2jj!k=0jk!(jk)!(1)jki=0nki
∑ i = 0 n k i \sum_{i=0}^nk^i i=0nki不好求,原因主要在于i会加一维的复杂度,转化一下消去i
∑ i = 0 n k i = k n + 1 − 1 k − 1 \sum_{i=0}^nk^i=\frac{k^{n+1}-1}{k-1} i=0nki=k1kn+11
则原式
= ∑ j = 0 n 2 j ∗ j ! ∑ k = 0 j ( − 1 ) j − k ( j − k ) ! k n + 1 − 1 k ! ( k − 1 ) =\sum_{j=0}^n2^j*j!\sum_{k=0}^j\frac{(-1)^{j-k}}{(j-k)!}\frac{k^{n+1}-1}{k!(k-1)} =j=0n2jj!k=0j(jk)!(1)jkk!(k1)kn+11
然后就可以卷积了
Code:

#include<bits/stdc++.h>
#define poly vector<int>
#define pb push_back
#define ll long long
#define mod 998244353
using namespace std;
inline int read(){
	int res=0,f=1;char ch=getchar();
	while(!isdigit(ch)) {if(ch=='-') f=-f;ch=getchar();}
	while(isdigit(ch)) {res=(res<<1)+(res<<3)+(ch^48);ch=getchar();}
	return res*f;
}
inline int add(int x,int y){x+=y;if(x>=mod) x-=mod;return x;}
inline int dec(int x,int y){x-=y;if(x<0) x+=mod;return x;}
inline int mul(int x,int y){return 1ll*x*y%mod;}
inline void Mul(int &x,int y){x=1ll*x*y%mod;}
inline void inc(int &x,int y){x+=y;if(x>=mod) x-=mod;}
inline int ksm(int a,int b){int res=1;for(;b;b>>=1,Mul(a,a)) if(b&1) Mul(res,a);return res;}
namespace Ntt{
	const int N=1e6+5;
	int *w[22],rev[N<<2];
	inline void init(int n){for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)*(n>>1));}
	inline void init_w(){
		for(int i=1;i<=21;i++) w[i]=new int[1<<(i-1)];
		int wn=ksm(3,(mod-1)/(1<<21));
		w[21][0]=1;
		for(int i=1;i<(1<<(20));i++) w[21][i]=mul(w[21][i-1],wn);
		for(int i=20;i;i--)
			for(int j=0;j<(1<<(i-1));j++) w[i][j]=w[i+1][j<<1];
	}
	inline void ntt(poly &f,int n,int kd){
		for(int i=0;i<n;i++) if(i>rev[i]) swap(f[i],f[rev[i]]);
		for(int mid=1,l=1;mid<n;mid<<=1,l++){
			for(int i=0;i<n;i+=(mid<<1)){
				for(int j=0,a0,a1;j<mid;j++){
					a0=f[i+j],a1=mul(f[i+j+mid],w[l][j]);
					f[i+j]=add(a0,a1);f[i+j+mid]=dec(a0,a1);
				}
			}
		}
		if(kd==-1 && (reverse(f.begin()+1,f.begin()+n),1))
			for(int inv=ksm(n,mod-2),i=0;i<n;i++) Mul(f[i],inv);
	}	
	inline poly operator -(poly a,poly b){
		poly c;int lim=max(a.size(),b.size());c.resize(lim);
		for(int i=0;i<lim;i++)c[i]=dec(a[i],b[i]);return c;
	}
	inline poly operator *(poly a,poly b){
		int m=a.size()+b.size()-1,n=1;
		if(m<=128){
			poly c(m,0);
			for(int i=0;i<a.size();i++)
				for(int j=0;j<b.size();j++) inc(c[i+j],mul(a[i],b[j]));
			return c;	
		}
		while(n<m) n<<=1;
		init(n);
		a.resize(n);ntt(a,n,1);
		b.resize(n);ntt(b,n,1);
		for(int i=0;i<n;i++) Mul(a[i],b[i]);
		ntt(a,n,-1);a.resize(m);
		return a;
	}
}
using namespace Ntt;
int fac[N],ifac[N];
inline void init_fac(int n){
	fac[0]=ifac[0]=1;
	for(int i=1;i<=n;i++) fac[i]=mul(fac[i-1],i);
	ifac[n]=ksm(fac[n],mod-2);
	for(int i=n-1;i;i--) ifac[i]=mul(ifac[i+1],i+1);
}
poly a,b,ans;
int main(){
	int n=read();init_fac(n);init_w();
	for(int i=0;i<=n;i++) a.pb((i&1)?mul(mod-1,ifac[i]):ifac[i]);
	b.pb(1),b.pb(n+1);
	for(int i=2;i<=n;i++) b.pb(mul(dec(ksm(i,n+1),1),ksm(mul(i-1,fac[i]),mod-2)));
	ans=a*b;
	int finalans=0;
	for(int i=0,j=1;i<=n;i++,Mul(j,2)) inc(finalans,mul(mul(j,fac[i]),ans[i]));
	cout<<finalans;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值