【tensorflow目标检测】COCO数据集转换为tfrecord(删去原数据集漏标的完美转换方法)

1. 首先,利用tensorflow原有代码将coco数据集转换为tfrecord格式
#creat_coco_tf_record.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

r"""Convert raw COCO dataset to TFRecord for object_detection.

Please note that this tool creates sharded output files.

Example usage:
    python create_coco_tf_record.py --logtostderr \
      --train_image_dir="${TRAIN_IMAGE_DIR}" \
      --val_image_dir="${VAL_IMAGE_DIR}" \
      --test_image_dir="${TEST_IMAGE_DIR}" \
      --train_annotations_file="${TRAIN_ANNOTATIONS_FILE}" \
      --val_annotations_file="${VAL_ANNOTATIONS_FILE}" \
      --testdev_annotations_file="${TESTDEV_ANNOTATIONS_FILE}" \
      --output_dir="${OUTPUT_DIR}"
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import hashlib
import io
import json
import os
import contextlib2
import numpy as np
import PIL.Image

from pycocotools import mask
import tensorflow as tf

from object_detection.dataset_tools import tf_record_creation_util
from object_detection.utils import dataset_util
from object_detection.utils import label_map_util


flags = tf.app.flags
tf.flags.DEFINE_boolean('include_masks', False,
                        'Whether to include instance segmentations masks '
                        '(PNG encoded) in the result. default: False.')
tf.flags.DEFINE_string('train_image_dir', '',
                       'Training image directory.')
tf.flags.DEFINE_string('val_image_dir', '',
                       'Validation image directory.')
tf.flags.DEFINE_string('test_image_dir', '',
                       'Test image directory.')
tf.flags.DEFINE_string('train_annotations_file', '',
                       'Training annotations JSON file.')
tf.flags.DEFINE_string('val_annotations_file', '',
                       'Validation annotations JSON file.')
tf.flags.DEFINE_string('testdev_annotations_file', '',
                       'Test-dev annotations JSON file.')
tf.flags.DEFINE_string('output_dir', '/tmp/', 'Output data directory.')

FLAGS = flags.FLAGS

tf.logging.set_verbosity(tf.logging.INFO)


def create_tf_example(image,
                      annotations_list,
                      image_dir,
                      category_index,
                      include_masks=False):
  """Converts image and annotations to a tf.Example proto.

  Args:
    image: dict with keys:
      [u'license', u'file_name', u'coco_url', u'height', u'width',
      u'date_captured', u'flickr_url', u'id']
    annotations_list:
      list of dicts with keys:
      [u'segmentation', u'area', u'iscrowd', u'image_id',
      u'bbox', u'category_id', u'id']
      Notice that bounding box coordinates in the official COCO dataset are
      given as [x, y, width, height] tuples using absolute coordinates where
      x, y represent the top-left (0-indexed) corner.  This function converts
      to the format expected by the Tensorflow Object Detection API (which is
      which is [ymin, xmin, ymax, xmax] with coordinates normalized relative
      to image size).
    image_dir: directory containing the image files.
    category_index: a dict containing COCO category information keyed
      by the 'id' field of each category.  See the
      label_map_util.create_category_index function.
    include_masks: Whether to include instance segmentations masks
      (PNG encoded) in the result. default: False.
  Returns:
    example: The converted tf.Example
    num_annotations_skipped: Number of (invalid) annotations that were ignored.

  Raises:
    ValueError: if the image pointed to by data['filename'] is not a valid JPEG
  """
  image_height = image['height']
  image_width = image['width']
  filename = image['file_name']
  image_id = image['id']

  full_path = os.path.join(image_dir, filename)
  with tf.gfile.GFile(full_path, 'rb') as fid:
    encoded_jpg = fid.read()
  encoded_jpg_io = io.BytesIO(encoded_jpg)
  image = PIL.Image.open(encoded_jpg_io)
  key = hashlib.sha256(encoded_jpg).hexdigest()

  xmin = []
  xmax = []
  ymin = []
  ymax = []
  is_crowd = []
  category_names = []
  category_ids = []
  area = []
  encoded_mask_png = []
  num_annotations_skipped = 0
  for object_annotations in annotations_list:
    (x, y, width, height) = tuple(object_annotations['bbox'])
    if width <= 0 or height <= 0:
      num_annotations_skipped += 1
      continue
    if x + width > image_width or y + height > image_height:
      num_annotations_skipped += 1
      continue
    xmin.append(float(x) / image_width)
    xmax.append(float(x + width) / image_width)
    ymin.append(float(y) / image_height)
    ymax.append(float(y + height) / image_height)
    is_crowd.append(object_annotations['iscrowd'])
    category_id = int(object_annotations['category_id'])
    category_ids.append(category_id)
    category_names.append(category_index[category_id]['name'].encode('utf8'))
    area.append(object_annotations['area'])

    if include_masks:
      run_len_encoding = mask.frPyObjects(object_annotations['segmentation'],
                                          image_height, image_width)
      binary_mask = mask.decode(run_len_encoding)
      if not object_annotations['iscrowd']:
        binary_mask = np.amax(binary_mask, axis=2)
      pil_image = PIL.Image.fromarray(binary_mask)
      output_io = io.BytesIO()
      pil_image.save(output_io, format='PNG')
      encoded_mask_png.append(output_io.getvalue())
  feature_dict = {
      'image/height':
          dataset_util.int64_feature(image_height),
      'image/width':
          dataset_util.int64_feature(image_width),
      'image/filename':
          dataset_util.bytes_feature(filename.encode('utf8')),
      'image/source_id':
          dataset_util.bytes_feature(str(image_id).encode('utf8')),
      'image/key/sha256':
          dataset_util.bytes_feature(key.encode('utf8')),
      'image/encoded':
          dataset_util.bytes_feature(encoded_jpg),
      'image/format':
          dataset_util.bytes_feature('jpeg'.encode('utf8')),
      'image/object/bbox/xmin':
          dataset_util.float_list_feature(xmin),
      'image/object/bbox/xmax':
          dataset_util.float_list_feature(xmax),
      'image/object/bbox/ymin':
          dataset_util.float_list_feature(ymin),
      'image/object/bbox/ymax':
          dataset_util.float_list_feature(ymax),
      'image/object/class/text':
          dataset_util.bytes_list_feature(category_names),
      'image/object/is_crowd':
          dataset_util.int64_list_feature(is_crowd),
      'image/object/area':
          dataset_util.float_list_feature(area),
  }
  if include_masks:
    feature_dict['image/object/mask'] = (
        dataset_util.bytes_list_feature(encoded_mask_png))
  example = tf.train.Example(features=tf.train.Features(feature=feature_dict))
  return key, example, num_annotations_skipped


def _create_tf_record_from_coco_annotations(
    annotations_file, image_dir, output_path, include_masks, num_shards):
  """Loads COCO annotation json files and converts to tf.Record format.

  Args:
    annotations_file: JSON file containing bounding box annotations.
    image_dir: Directory containing the image files.
    output_path: Path to output tf.Record file.
    include_masks: Whether to include instance segmentations masks
      (PNG encoded) in the result. default: False.
    num_shards: number of output file shards.
  """
  with contextlib2.ExitStack() as tf_record_close_stack, \
      tf.gfile.GFile(annotations_file, 'r') as fid:
    output_tfrecords = tf_record_creation_util.open_sharded_output_tfrecords(
        tf_record_close_stack, output_path, num_shards)
    groundtruth_data = json.load(fid)
    images = groundtruth_data['images']
    category_index = label_map_util.create_category_index(
        groundtruth_data['categories'])

    annotations_index = {}
    if 'annotations' in groundtruth_data:
      tf.logging.info(
          'Found groundtruth annotations. Building annotations index.')
      for annotation in groundtruth_data['annotations']:
        image_id = annotation['image_id']
        if image_id not in annotations_index:
          annotations_index[image_id] = []
        annotations_index[image_id].append(annotation)
    missing_annotation_count = 0
    for image in images:
      image_id = image['id']
      if image_id not in annotations_index:
        missing_annotation_count += 1
        annotations_index[image_id] = []
    tf.logging.info('%d images are missing annotations.',
                    missing_annotation_count)

    total_num_annotations_skipped = 0
    for idx, image in enumerate(images):
      if idx % 100 == 0:
        tf.logging.info('On image %d of %d', idx, len(images))
      annotations_list = annotations_index[image['id']]
      _, tf_example, num_annotations_skipped = create_tf_example(
          image, annotations_list, image_dir, category_index, include_masks)
      total_num_annotations_skipped += num_annotations_skipped
      shard_idx = idx % num_shards
      output_tfrecords[shard_idx].write(tf_example.SerializeToString())
    tf.logging.info('Finished writing, skipped %d annotations.',
                    total_num_annotations_skipped)


def main(_):
  assert FLAGS.train_image_dir, '`train_image_dir` missing.'
  assert FLAGS.val_image_dir, '`val_image_dir` missing.'
  assert FLAGS.test_image_dir, '`test_image_dir` missing.'
  assert FLAGS.train_annotations_file, '`train_annotations_file` missing.'
  assert FLAGS.val_annotations_file, '`val_annotations_file` missing.'
  assert FLAGS.testdev_annotations_file, '`testdev_annotations_file` missing.'

  if not tf.gfile.IsDirectory(FLAGS.output_dir):
    tf.gfile.MakeDirs(FLAGS.output_dir)
  train_output_path = os.path.join(FLAGS.output_dir, 'coco_train.record')
  val_output_path = os.path.join(FLAGS.output_dir, 'coco_val.record')
  testdev_output_path = os.path.join(FLAGS.output_dir, 'coco_testdev.record')

  _create_tf_record_from_coco_annotations(
      FLAGS.train_annotations_file,
      FLAGS.train_image_dir,
      train_output_path,
      FLAGS.include_masks,
      num_shards=100)
  _create_tf_record_from_coco_annotations(
      FLAGS.val_annotations_file,
      FLAGS.val_image_dir,
      val_output_path,
      FLAGS.include_masks,
      num_shards=10)
  _create_tf_record_from_coco_annotations(
      FLAGS.testdev_annotations_file,
      FLAGS.test_image_dir,
      testdev_output_path,
      FLAGS.include_masks,
      num_shards=100)


if __name__ == '__main__':
  tf.app.run()

2. 通过如下代码确定tfrecord中哪些图片不含bbox
import os
import tensorflow as tf

file_list = tf.gfile.Glob(os.path.join('×××', 'coco_train.record-?????-of-?????'))
i = 0
count = 0
for file in file_list:
    for string_record in tf.python_io.tf_record_iterator(file):
        example = tf.train.Example()
        example.ParseFromString(string_record)

        i += 1
        image_id = example.features.feature['image/source_id'].bytes_list.value
        xmax = example.features.feature['image/object/bbox/xmax'].float_list.value
        # xmin = example.features.feature['image/object/bbox/xmin'].float_list.value
        # ymax = example.features.feature['image/object/bbox/ymax'].float_list.value
        # ymin = example.features.feature['image/object/bbox/ymin'].float_list.value

        if xmax == []:
            print(image_id)
            count += 1
    print(file, 'has been checked.')

print(i, 'images have been checked.')
print(count, 'annotations without bbox.')

3. 将缺少标注的图片从图片库中删除

如下代码将图片名称规范化,然后直接写一个shell脚本批量删除就行;

s =[]
f = open('/×××/a.txt','r')
for lines in f:
    ls = lines.replace('[','').replace('b','').replace('\'','').replace('\'','').replace(']','').strip('\n')
    if len(ls) < 12:
        ls = ls.zfill(12)
    s.append(ls)
f.close()
print(s)


f1 = open('/×××/b.txt','w')
for j in s:
    f1.write(j+'.jpg'+' '+'\\'+'\n')
f1.close()
4. 删除好图片后,将之前生成的tfrecord删除,之后按照下面代码的运行提示运行如下代码:

本身执行完成上述步骤只是删除了图片本身,而coco数据集中的annotations下面的json文件中的images信息并没有删除(一开始考虑直接去json文件中删除这些图片信息,太多了一千多张,因此诞生了下面的代码),如果直接还是采用第1步中官方的转换代码会报错说找不到某个图片文件(因为已经删掉了啊,怎么找得到),因此修改官方转换代码如下,之后可转出完美的tfrecord:

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

r"""Convert raw COCO dataset to TFRecord for object_detection.

Please note that this tool creates sharded output files.

Example usage:
    python create_coco_tf_record.py --logtostderr \
      --train_image_dir="${TRAIN_IMAGE_DIR}" \
      --val_image_dir="${VAL_IMAGE_DIR}" \
      --test_image_dir="${TEST_IMAGE_DIR}" \
      --train_annotations_file="${TRAIN_ANNOTATIONS_FILE}" \
      --val_annotations_file="${VAL_ANNOTATIONS_FILE}" \
      --testdev_annotations_file="${TESTDEV_ANNOTATIONS_FILE}" \
      --output_dir="${OUTPUT_DIR}"
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import hashlib
import io
import json
import os
import contextlib2
import numpy as np
import PIL.Image

from pycocotools import mask
import tensorflow as tf

from object_detection.dataset_tools import tf_record_creation_util
from object_detection.utils import dataset_util
from object_detection.utils import label_map_util


flags = tf.app.flags
tf.flags.DEFINE_boolean('include_masks', False,
                        'Whether to include instance segmentations masks '
                        '(PNG encoded) in the result. default: False.')
tf.flags.DEFINE_string('train_image_dir', '',
                       'Training image directory.')
tf.flags.DEFINE_string('val_image_dir', '',
                       'Validation image directory.')
tf.flags.DEFINE_string('train_annotations_file', '',
                       'Training annotations JSON file.')
tf.flags.DEFINE_string('val_annotations_file', '',
                       'Validation annotations JSON file.')
tf.flags.DEFINE_string('output_dir', '/tmp/', 'Output data directory.')

FLAGS = flags.FLAGS

tf.logging.set_verbosity(tf.logging.INFO)


def create_tf_example(image,
                      annotations_list,
                      image_dir,
                      category_index,
                      include_masks=False):
  """Converts image and annotations to a tf.Example proto.

  Args:
    image: dict with keys:
      [u'license', u'file_name', u'coco_url', u'height', u'width',
      u'date_captured', u'flickr_url', u'id']
    annotations_list:
      list of dicts with keys:
      [u'segmentation', u'area', u'iscrowd', u'image_id',
      u'bbox', u'category_id', u'id']
      Notice that bounding box coordinates in the official COCO dataset are
      given as [x, y, width, height] tuples using absolute coordinates where
      x, y represent the top-left (0-indexed) corner.  This function converts
      to the format expected by the Tensorflow Object Detection API (which is
      which is [ymin, xmin, ymax, xmax] with coordinates normalized relative
      to image size).
    image_dir: directory containing the image files.
    category_index: a dict containing COCO category information keyed
      by the 'id' field of each category.  See the
      label_map_util.create_category_index function.
    include_masks: Whether to include instance segmentations masks
      (PNG encoded) in the result. default: False.
  Returns:
    example: The converted tf.Example
    num_annotations_skipped: Number of (invalid) annotations that were ignored.

  Raises:
    ValueError: if the image pointed to by data['filename'] is not a valid JPEG
  """
  image_height = image['height']
  image_width = image['width']
  filename = image['file_name']
  image_id = image['id']

  full_path = os.path.join(image_dir, filename)
  with tf.gfile.GFile(full_path, 'rb') as fid:
    encoded_jpg = fid.read()
  encoded_jpg_io = io.BytesIO(encoded_jpg)
  image = PIL.Image.open(encoded_jpg_io)
  key = hashlib.sha256(encoded_jpg).hexdigest()

  xmin = []
  xmax = []
  ymin = []
  ymax = []
  is_crowd = []
  category_names = []
  category_ids = []
  area = []
  encoded_mask_png = []
  num_annotations_skipped = 0
  for object_annotations in annotations_list:
    (x, y, width, height) = tuple(object_annotations['bbox'])
    if width <= 0 or height <= 0:
      num_annotations_skipped += 1
      continue
    if x + width > image_width or y + height > image_height:
      num_annotations_skipped += 1
      continue
    xmin.append(float(x) / image_width)
    xmax.append(float(x + width) / image_width)
    ymin.append(float(y) / image_height)
    ymax.append(float(y + height) / image_height)
    is_crowd.append(object_annotations['iscrowd'])
    category_id = int(object_annotations['category_id'])
    category_ids.append(category_id)
    category_names.append(category_index[category_id]['name'].encode('utf8'))
    area.append(object_annotations['area'])

    if include_masks:
      run_len_encoding = mask.frPyObjects(object_annotations['segmentation'],
                                          image_height, image_width)
      binary_mask = mask.decode(run_len_encoding)
      if not object_annotations['iscrowd']:
        binary_mask = np.amax(binary_mask, axis=2)
      pil_image = PIL.Image.fromarray(binary_mask)
      output_io = io.BytesIO()
      pil_image.save(output_io, format='PNG')
      encoded_mask_png.append(output_io.getvalue())
  feature_dict = {
      'image/height':
          dataset_util.int64_feature(image_height),
      'image/width':
          dataset_util.int64_feature(image_width),
      'image/filename':
          dataset_util.bytes_feature(filename.encode('utf8')),
      'image/source_id':
          dataset_util.bytes_feature(str(image_id).encode('utf8')),
      'image/key/sha256':
          dataset_util.bytes_feature(key.encode('utf8')),
      'image/encoded':
          dataset_util.bytes_feature(encoded_jpg),
      'image/format':
          dataset_util.bytes_feature('jpeg'.encode('utf8')),
      'image/object/bbox/xmin':
          dataset_util.float_list_feature(xmin),
      'image/object/bbox/xmax':
          dataset_util.float_list_feature(xmax),
      'image/object/bbox/ymin':
          dataset_util.float_list_feature(ymin),
      'image/object/bbox/ymax':
          dataset_util.float_list_feature(ymax),
      'image/object/class/text':
          dataset_util.bytes_list_feature(category_names),
      'image/object/is_crowd':
          dataset_util.int64_list_feature(is_crowd),
      'image/object/area':
          dataset_util.float_list_feature(area),
  }
  if include_masks:
    feature_dict['image/object/mask'] = (
        dataset_util.bytes_list_feature(encoded_mask_png))
  example = tf.train.Example(features=tf.train.Features(feature=feature_dict))
  return key, example, num_annotations_skipped


def _create_tf_record_from_coco_annotations(
    annotations_file, image_dir, output_path, include_masks, num_shards):
  """Loads COCO annotation json files and converts to tf.Record format.

  Args:
    annotations_file: JSON file containing bounding box annotations.
    image_dir: Directory containing the image files.
    output_path: Path to output tf.Record file.
    include_masks: Whether to include instance segmentations masks
      (PNG encoded) in the result. default: False.
    num_shards: number of output file shards.
  """
  with contextlib2.ExitStack() as tf_record_close_stack, \
      tf.gfile.GFile(annotations_file, 'r') as fid:
    output_tfrecords = tf_record_creation_util.open_sharded_output_tfrecords(
        tf_record_close_stack, output_path, num_shards)
    groundtruth_data = json.load(fid)
    images = groundtruth_data['images']
    category_index = label_map_util.create_category_index(
        groundtruth_data['categories'])

    annotations_index = {}
    if 'annotations' in groundtruth_data:
      tf.logging.info(
          'Found groundtruth annotations. Building annotations index.')
      for annotation in groundtruth_data['annotations']:
        image_id = annotation['image_id']
        if image_id not in annotations_index:
          annotations_index[image_id] = []
        annotations_index[image_id].append(annotation)
    missing_annotation_count = 0
    for image in images:
      image_id = image['id']
      if image_id not in annotations_index:
        missing_annotation_count += 1
        #annotations_index[image_id] = []
    tf.logging.info('%d images are missing annotations.',
                    missing_annotation_count)

    total_num_annotations_skipped = 0
    for idx, image in enumerate(images):
      if idx % 100 == 0:
        tf.logging.info('On image %d of %d', idx, len(images))
      image_id = image['id']
      if image_id not in annotations_index:
        continue
      else:
        annotations_list = annotations_index[image['id']]
        _, tf_example, num_annotations_skipped = create_tf_example(image, annotations_list, image_dir, category_index, include_masks)
        total_num_annotations_skipped += num_annotations_skipped
        shard_idx = idx % num_shards
        output_tfrecords[shard_idx].write(tf_example.SerializeToString())
    tf.logging.info('Finished writing, skipped %d annotations.',
                    total_num_annotations_skipped)


def main(_):
  assert FLAGS.train_image_dir, '`train_image_dir` missing.'
  assert FLAGS.val_image_dir, '`val_image_dir` missing.'
  assert FLAGS.train_annotations_file, '`train_annotations_file` missing.'
  assert FLAGS.val_annotations_file, '`val_annotations_file` missing.'

  if not tf.gfile.IsDirectory(FLAGS.output_dir):
    tf.gfile.MakeDirs(FLAGS.output_dir)
  train_output_path = os.path.join(FLAGS.output_dir, 'coco_train.record')
  val_output_path = os.path.join(FLAGS.output_dir, 'coco_val.record')


  _create_tf_record_from_coco_annotations(
      FLAGS.train_annotations_file,
      FLAGS.train_image_dir,
      train_output_path,
      FLAGS.include_masks,
      num_shards=100)
  _create_tf_record_from_coco_annotations(
      FLAGS.val_annotations_file,
      FLAGS.val_image_dir,
      val_output_path,
      FLAGS.include_masks,
      num_shards=10)


if __name__ == '__main__':
  tf.app.run()

最后再检查一遍新的tfrecord有无漏标也可~

注意:

有可能tf官方会更换其tfrecord中键值对中键的名字,通过如下代码可以知道你的tfrecord中的存储的键值情况:

image/height : int64_list
image/object/class/text : bytes_list
image/source_id : bytes_list
image/object/bbox/ymin : float_list
image/encoded : bytes_list
image/object/bbox/ymax : float_list
image/object/bbox/xmin : float_list
image/filename : bytes_list
image/object/bbox/xmax : float_list
image/object/is_crowd : int64_list
image/object/area : float_list
image/key/sha256 : bytes_list
image/width : int64_list
image/format : bytes_list
#!/usr/bin/python
# -*- coding: utf-8 -*-
 
import sys
import tensorflow as tf
 
# 用法:python trackTFRecord.py True file1 file2 
# trackTFRecord.py 就是当前这个py文件
# True 表示是否输出具体的数据
# file1 file2 表示的是需要查看的TFRecord文件的绝对路径
# 输出说明:tf.float32对应TFRecord的FloatList,tf.int64对应Int64List,tf.string对应BytesList
def main():
    print('TFRecord文件个数为{0}个'.format(len(sys.argv)-2))
    for i in range(2, len(sys.argv)):
        filepath = sys.argv[i]
        with tf.Session() as sess:
            filenames = [filepath]
            # 加载TFRecord数据
            ds = tf.data.TFRecordDataset(filenames)
            ds = ds.batch(10)
            ds = ds.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
            iterator = ds.make_one_shot_iterator()
            # 为了加快速度,仅仅简单拿一组数据看下结构
            batch_data = iterator.get_next()
            res = sess.run(batch_data)
            serialized_example = res[0]
            example_proto = tf.train.Example.FromString(serialized_example)
            features = example_proto.features
            print('{0} 信息如下:'.format(filepath))
            for key in features.feature:
                feature = features.feature[key]
                ftype = None
                fvalue = None
                if len(feature.bytes_list.value) > 0:
                    ftype = 'bytes_list'
                    fvalue = feature.bytes_list.value
                    
                if len(feature.float_list.value) > 0:
                    ftype = 'float_list'
                    fvalue = feature.float_list.value
                    
                if len(feature.int64_list.value) > 0:
                    ftype = 'int64_list'
                    fvalue = feature.int64_list.value
                
                result = '{0} : {1}'.format(key, ftype)
                if 'True' == sys.argv[1]:
                    result = '{0} : {1}'.format(result, fvalue)
                print(result) 
 
if __name__ == "__main__":
    main()
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值