leetcode 135.分发糖果 Java

该博客讨论了LeetCode上的糖果分配问题,提供了一个线性时间复杂度的解法。给定每个孩子的评分,必须确保评分高的孩子获得更多的糖果,同时每个孩子至少得到一个。示例展示了如何在满足条件的情况下最小化所需糖果数。代码实现中,通过维护左右两侧的最大糖果数,最终得出总糖果数。
摘要由CSDN通过智能技术生成

题目链接

https://leetcode-cn.com/problems/candy/

描述

老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。

你需要按照以下要求,帮助老师给这些孩子分发糖果:

每个孩子至少分配到 1 个糖果。
相邻的孩子中,评分高的孩子必须获得更多的糖果。
那么这样下来,老师至少需要准备多少颗糖果呢?

示例

示例 1:

输入: [1,0,2]
输出: 5
解释: 你可以分别给这三个孩子分发 212 颗糖果。

示例 2:

输入: [1,2,2]
输出: 4
解释: 你可以分别给这三个孩子分发 121 颗糖果。
     第三个孩子只得到 1 颗糖果,这已满足上述两个条件。

初始代码模板

class Solution {
    public int candy(int[] ratings) {
       
    }
}

代码

直接看下面的题解就可以了,复杂度是线性的:
https://leetcode-cn.com/problems/candy/solution/candy-cong-zuo-zhi-you-cong-you-zhi-zuo-qu-zui-da-/

class Solution {
    public int candy(int[] ratings) {
        int len = ratings.length;
        int[] left = new int[len];
        int[] right = new int[len];

        left[0] = 1;
        right[len - 1] = 1;

        for (int i = 1; i < len; i++) {
            if (ratings[i] > ratings[i - 1]) {
                left[i] = left[i - 1] + 1;
            } else {
                left[i] = 1;
            }
        }

        for (int i = len - 2; i >= 0; i--) {
            if (ratings[i] > ratings[i + 1]) {
                right[i] = right[i + 1] + 1;
            } else {
                right[i] = 1;
            }
        }

        int res = 0;
        for (int i = 0; i < len; i++) {
            res += Math.max(left[i], right[i]);
        }

        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值