Problem Description
给定一个由n行数字组成的数字三角形如下图所示。试设计一个算法,计算出从三角形的顶至底的一条路径,使该路径经过的数字总和最大。
对于给定的由n行数字组成的数字三角形,计算从三角形的顶至底的路径经过的数字和的最大值。
Input
输入数据的第1行是数字三角形的行数n,1≤n≤100。接下来n行是数字三角形各行中的数字。所有数字在0…99之间。
Output
输出数据只有一个整数,表示计算出的最大值。
Sample Input
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
Sample Output
30
这是一个基础的动态规划问题。
#include<cstdio>
#include<iostream>
using namespace std;
int main()
{
int n,a[101][101],i,j;
scanf("%d",&n);
for(i=1;i<=n;i++)
for(j=1;j<=i;j++)
scanf("%d",&a[i][j]);
for(i=n-1;i>=1;i--)
for(j=1;j<=i;j++)
{
if(a[i+1][j]>a[i+1][j+1])
a[i][j]+=a[i+1][j];
else
a[i][j]+=a[i+1][j+1];
}
printf("%d",a[1][1]);
return 0;
}
题目要求从顶走到底 所走的和最大。如果我们从顶开始往下遍历一次比较。可能到第三步就会感觉很吃力。我们可以逆过程想一下,我们可以从底部往顶部走。寻找更大的,
比如4 5 2 6 5。我们可以比较4 5跟5 这时候后大者肯定要往上走 把它加到上一层的这个位置来。每两个一比较 取最大者加入上一层
for(i=n-1;i>=1;i--)
for(j=1;j<=i;j++)
{
if(a[i+1][j]>a[i+1][j+1])
a[i][j]+=a[i+1][j];
else
a[i][j]+=a[i+1][j+1];
}
```可以是让上一层每一个数都加了下一层的最大数每一层都有前一层的最大数。
直到顶部。