中国剩余定理(c++)

一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K。例如,K % 2 = 1, K % 3 = 2, K % 5 = 3。符合条件的最小的K = 23。
收起
输入
第1行:1个数N表示后面输入的质数及模的数量。(2 <= N <= 10)
第2 - N + 1行,每行2个数P和M,中间用空格分隔,P是质数,M是K % P的结果。(2 <= P <= 100, 0 <= K < P)
输出
输出符合条件的最小的K。数据中所有K均小于10^9。
输入样例
3
2 1
3 2
5 3
输出样例
23

基本思想:先求出满足前两项的K的值,然后求出前两项的最小公倍数,将前两项最小公倍数作为K的新值,重复上述操作,求出满足前三个K的值,以此类推。

#include<iostream>
#include<algorithm>
using namespace std;
int a[15],p[15];
int main()
{
	int n;
	cin>>n;
	for(int i=0;i<n;i++)
	{
		cin>>a[i]>>p[i];
	}
	int k=p[0],s=1;
	for(int i=0;i<n-1;i++)
	{
		s=s*a[i];//s为a[i]前i项的最大公倍数,并且所有整数之间互质 
		while(k%a[i+1]!=p[i+1])
		  k+=s;//当目前K不满足条件是,加上前i项的最大公倍数 
	}
	cout<<k<<endl;
	return 0;
}
#include #include using namespace std; typedef int LL; typedef pair PLL; LL inv(LL t, LL p) {//求t关于p的逆元 if (t >= p) t = t%p; return t == 1 ? 1 : (p - p / t) * inv(p % t, p) % p; } LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } PLL linear(LL A[], LL B[], LL M[], int n) {//求解A[i]x = B[i] (mod M[i]),总共n个线性方程组 LL x = 0, m = 1; for (int i = 0; i < n; i++) { LL a = A[i] * m, b = B[i] - A[i] * x, d =gcd(M[i], a); if (b % d != 0) return PLL(0, -1);//答案不存在,返回-1 LL t = b / d * inv(a / d, M[i] / d) % (M[i] / d); x = x + m*t; m *= M[i] / d; } x = (x % m + m) % m; return PLL(x, m);//返回的x就是答案,m是最后的lcm值 } int main() { int n; scanf_s("%d", &n); LL a[2017], b[2017], m[2017]; for (int i = 0; i<n; i++) { scanf_s("%d%d%d", &a[i], &b[i], &m[i]); } PLL pa = linear(a, b, m, n); printf("%lld\n", pa.first); } 设计思路: 有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?” 解这题,先构造一个答案 5*7*inv(5*7, 3) % 3 = 1 3*7*inv(3*7, 5) % 5 = 1 3*5*inv(3*5, 7) % 7 = 1 然后两边同乘你需要的数 2 * 5*7*inv(5*7, 3) % 3 = 2 3 * 3*7*inv(3*7, 5) % 5 = 3 2 * 3*5*inv(3*5, 7) % 7 = 2 令 a = 2 * 5*7*inv(5*7, 3) b = 3 * 3*7*inv(3*7, 5) c = 2 * 3*5*inv(3*5, 7) 那么 a % 3 = 2 b % 5 = 3 c % 7 = 2 其实答案就是a+b+c 因为 a%5 = a%7 = 0 因为a是5的倍数,也是7的倍数 b%3 = b%7 = 0 因为b是3的倍数,也是7的倍数 c%3 = c%5 = 0 因为c是3的倍数,也是5的倍数 所以 (a + b + c) % 3 = (a % 3) + (b % 3) + (c % 3) = 2 + 0 + 0 = 2 (a + b + c) % 5 = (a % 5) + (b % 5) + (c % 5) = 0 + 3 + 0 = 3 (a + b + c) % 7 = (a % 7) + (b % 7) + (c % 7) = 0 + 0 + 2 = 2 答案a+b+c完全满足题意 但是答案,不只一个,有无穷个,每相隔105就是一个答案(105 = 3 * 5 * 7) a=2*5*7*2=140 b=3*3*7*1=63 c=2*3*5*1=30 140+63+30=233 2335 = 23 如果题目问你最小的那个答案,那就是23了。 当 1*x=2(%3) 1*x=3(%5) 1*x=2(%7) 输入: 3 1 2 3 1 3 5 1 2 7 输出: 23
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值