1.安装anaconda
官网下载。一路安装。过程中注意选择自动配置环境变量。
安装完成后,可通过打开cmd,输入conda来查看安装是否成功。
2.选择python版本,创建TensorFlow运行的虚拟环境
若是安装TensorFlow1版本,则必须安装python3.7及以下的。
安装好虚拟环境后,激活虚拟环境,然后安装TensorFlow
conda create -n tensorflow python=3.7
conda activate tensorflow
conda deactivate tensorFlow
3.利用清华镜像安装TensorFlow,注意安装哪一个版本,格式如下
CPU版本:
pip install tensorflow==1.12 -i https://pypi.tuna.tsinghua.edu.cn/simple
GPU版本:
pip install tensorflow-gpu==1.12 -i https://pypi.tuna.tsinghua.edu.cn/simple
import tensorflow as tf 来验证。
4.将创建的虚拟环境加入到anaconda中主的jupyter中
4.1 利用jupyter插件来解决
conda install ipykernel
python -m ipykernel install --name 虚拟环境名(tensorflow) --display-name 在jupyter中展现的用户名
//Linux下上面如果报错,则运行下面的
python -m ipykernel install --user --name 虚拟环境名(tensorflow) --display-name 在jupyter中展现的用户名
5.如果新创建的环境想要使用gpu,电脑上还需要找到和GPU相对应的cuda和cudnn,然后在自己的虚拟环境中安装cuda,cudnn
conda install cudatoolkit=10.0
conda install cudnn
5.1 Linux下,整体可用的版本:
python 3.7
TensorFlow 1.14
cuda 10.0
cudnn 7.6.5
5.2 查看GPU是否可用的命令
import tensorflow as tf
tf.test.is_gpu_available()
6.查看自己的虚拟环境中安装了哪些包
conda list
查看GPU的使用情况
nvidia-smi
7.查看已有的虚拟环境
conda env list