损失函数

损失函数概念

损失函数:衡量模型输出与真实标签的差异
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

正则项

正则项是通过权值来平衡模型中明显特征和不明显特征,使模型不会过拟合

损失函数种类

1、nn.CrossEntropyLoss

在这里插入图片描述

功能: nn.LogSoftmax ()与nn.NLLLoss ()结合,进行
交叉熵计算
主要参数:
• w eigh t:各类别的loss设置权值
• igno re _ind e x:忽略某个类别
• redu c tion :计算模式,可为none/sum /m e an
none- 逐个元素计算
sum- 所有元素求和,返回标量
m e an- 加权平均,返回标量

2、 nn.NLLLoss

在这里插入图片描述

功能:实现负对数似然函数中的负号功能
主要参数:
• weigh t:各类别的loss设置权值
• igno re _ind e x:忽略某个类别
• redu c tion :计算模式,可为none/sum /m e an
none-逐个元素计算
sum-所有元素求和,返回标量
m e an-加权平均,返回标量

3、 nn.BCELoss

在这里插入图片描述

功能:二分类交叉熵
注意事项:输入值取值在[0,1]
主要参数:
• w eigh t:各类别的loss设置权值
• igno re _ind e x:忽略某个类别
• redu c tion :计算模式,可为none/sum /m e an

4、 nn.BCEWithLogitsLoss

在这里插入图片描述

功能:结合Sigmoid与二分类交叉熵
注意事项:网络最后不加sigmoid函数
主要参数:
• pos _w eigh t :正样本的权值
• weigh t:各类别的loss设置权值
• igno re _ind e x:忽略某个类别
• redu c tion :计算模式,可为none/sum /m e an

5. nn.L1Loss

在这里插入图片描述

功能:计算inputs与target之差的绝对值

6. nn.MSELoss

在这里插入图片描述

功能:计算inputs与target之差的平方
主要参数:

  • reduction
7. nn.SmoothL1Loss

在这里插入图片描述
在这里插入图片描述

8. nn.PoissonNLLLoss

在这里插入图片描述

功能:泊松分布的负对数似然损失函数
主要参数:
• log_input :输入是否为对数形式,决定计算公式
• full :计算所有loss,默认为False
• eps :修正项,避免log(input)为nan

9. nn.KLDivLoss

在这里插入图片描述

功能:计算KLD(divergence),KL散度,相对

注意事项:需提前将输入计算 log-probabilities,
如通过nn.logsoftmax()
主要参数:
• reduction :none/sum/mean/batchmean
batchmean- batchsize维度求平均值

10. nn.MarginRankingLoss

在这里插入图片描述

功能:计算两个向量之间的相似度,用于排序任务
特别说明:该方法计算两组数据之间的差异,返回一个n*n
的 loss 矩阵
主要参数:
• margin :边界值,x1与x2之间的差异值
• reduction :计算模式,可为none/sum/mean
y = 1时, 希望x1比x2大,当x1>x2时,不产生loss
y = -1时,希望x2比x1大,当x2>x1时,不产生loss

11. nn.MultiLabelMarginLoss

在这里插入图片描述

12. nn.SoftMarginLoss

在这里插入图片描述

功能:计算二分类的logistic损失
主要参数:
• reduction :计算模式,可为none/sum/mean

13. nn.MultiLabelSoftMarginLoss

在这里插入图片描述
在这里插入图片描述
功能:SoftMarginLoss多标签版本
主要参数:
• weight:各类别的loss设置权值
• reduction :计算模式,可为none/sum/mean

14. nn.MultiMarginLoss

在这里插入图片描述
主要参数:
• p :可选1或2 • weight:各类别的loss设置权值
• margin :边界值
• reduction :计算模式,可为none/sum/mean

15. nn.TripletMarginLoss

在这里插入图片描述
功能:计算三元组损失,人脸验证中常用
主要参数:
• p :范数的阶,默认为2 • margin :边界值
• reduction :计算模式,可为none/sum/mean

16. nn.HingeEmbeddingLoss

在这里插入图片描述
功能:计算两个输入的相似性,常用于
非线性embedding和半监督学习
特别注意:输入x应为两个输入之差的绝对值
主要参数:
• margin :边界值
• reduction :计算模式,可为none/sum/mean

17. nn.CosineEmbeddingLoss

在这里插入图片描述
功能:采用余弦相似度计算两个输入的相似性
主要参数:
• margin :可取值[-1, 1] , 推荐为[0, 0.5]
• reduction :计算模式,可为none/sum/mean

18. nn.CTCLoss

在这里插入图片描述

功能: 计算CTC损失,解决时序类数据的分类
Connectionist Temporal Classification
主要参数:
• blank :blank label
• zero_infinity :无穷大的值或梯度置0 • reduction :计算模式,可为none/sum/mean

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值