DenseNet稠密连接网络(pyTorch)

1 Introduction

与ResNet的主要区别在于,DenseNet里模块B的输出不是像ResNet那样和模块A的输出相加,而是在通道维上连结。这样模块A的输出可以直接传入模块B后面的层。在这个设计里,模块A直接跟模块B后面的所有层连接在了一起。这也是它被称为“稠密连接”的原因。
如果用公式表示的话,传统的网络在 [公式] 层的输出为:在这里插入图片描述
而对于ResNet,增加了来自上一层输入的identity函数:在这里插入图片描述
在DenseNet中,会连接前面所有层作为输入:在这里插入图片描述
图片引用自知乎@小白将

DenseNet的主要构建模块是稠密块(dense block)过渡层(transition layer)。前者定义了输入和输出是如何连结的,后者则用来控制通道数,使之不过大。
在这里插入图片描述

在DenseBlock中,各个层的特征图大小一致,可以在channel维度上连接。DenseBlock中的非线性组合函数H(·)采用的是BN+ReLU+3x3 Conv的结构,如下图所示。另外值得注意的一点是,与ResNet不同,所有DenseBlock中各个层卷积之后均输出k个特征图,即得到的特征图的channel数为 k,或者说采用 k 个卷积核。k 在DenseNet称为growth rate,这是一个超参数。一般情况下使用较小的k (比如12),就可以得到较佳的性能。假定输入层的特征图的channel数为 k0,那么l 层输入的channel数为 k0+k(l-1) ,因此随着层数增加,尽管 k设定得较小,DenseBlock的输入会非常多,不过这是由于特征重用所造成的,每个层仅有 k个特征是自己独有的。

图片引用自知乎@小白将

2 稠密块

import time
import torch
from torch import nn, optim
import torch.nn.functional as F

import sys
sys.path.append("..") 
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def conv_block(in_channels, out_channels):
    blk = nn.Sequential(nn.BatchNorm2d(in_channels), 
                        nn.ReLU(),
                        nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))
    return blk

在这里插入图片描述

# 稠密块由多个conv_block组成,每块使用相同的输出通道数。但在前向计算时,将每块的输入和输出在通道维上连结。
class DenseBlock(nn.Module):
    def __init__(self, num_convs, in_channels, out_channels):
        super(DenseBlock, self).__init__()
        net = []
        for i in range(num_convs):
            in_c = in_channels + i * out_channels
            net.append(conv_block(in_c, out_channels))
        self.net = nn.ModuleList(net)
        self.out_channels = in_channels + num_convs * out_channels # 计算输出通道数

    def forward(self, X):
        for blk in self.net:
            Y = blk(X)
            X = torch.cat((X, Y), dim=1)  # 在通道维上将输入和输出连结
        return X

3 过渡层

# 由于每个稠密块连结都会带来通道数的增加,使用过多则会带来过于复杂的模型。过渡层用来控制模型复杂度。它通过1×1卷积层来减小通道数,并使用步幅为2的平均池化层减半高和宽,从而进一步降低模型复杂度。
def transition_block(in_channels, out_channels):
    blk = nn.Sequential(
            nn.BatchNorm2d(in_channels), 
            nn.ReLU(),
            nn.Conv2d(in_channels, out_channels, kernel_size=1),
            nn.AvgPool2d(kernel_size=2, stride=2))
    return blk

4 DenseNet模型

DenseNet首先使用同ResNet一样的单卷积层和最大池化层。

类似于ResNet接下来使用的4个残差块,DenseNet使用的是4个稠密块。同ResNet一样,可以设置每个稠密块使用多少个卷积层,这里设成4,与ResNet-18保持一致。稠密块里的卷积层通道数(即增长率)设为32,所以每个稠密块将增加128个通道。

最后接上全局池化层和全连接层来输出。

net = nn.Sequential(
        nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
        nn.BatchNorm2d(64), 
        nn.ReLU(),
        nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

num_channels, growth_rate = 64, 32  # num_channels为当前的通道数
num_convs_in_dense_blocks = [4, 4, 4, 4]

for i, num_convs in enumerate(num_convs_in_dense_blocks):
    DB = DenseBlock(num_convs, num_channels, growth_rate)
    net.add_module("DenseBlosk_%d" % i, DB)
    # 上一个稠密块的输出通道数
    num_channels = DB.out_channels
    # 在稠密块之间加入通道数减半的过渡层
    if i != len(num_convs_in_dense_blocks) - 1:
        net.add_module("transition_block_%d" % i, transition_block(num_channels, num_channels // 2))
        num_channels = num_channels // 2
        
net.add_module("BN", nn.BatchNorm2d(num_channels))
net.add_module("relu", nn.ReLU())
net.add_module("global_avg_pool", d2l.GlobalAvgPool2d()) # GlobalAvgPool2d的输出: (Batch, num_channels, 1, 1)
net.add_module("fc", nn.Sequential(d2l.FlattenLayer(), nn.Linear(num_channels, 10))) 

5 获取数据并训练

batch_size = 256
# 如出现“out of memory”的报错信息,可减小batch_size或resize
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)

lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)

参考原文:《动手学深度学习(pyTorch)》

参考知乎:小白将

欢迎关注【OAOA

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值