!!! 有需要的小伙伴可以通过文章末尾名片咨询我哦!!!
💕💕作者:优创学社
💕💕个人简介:本人在读博士研究生,拥有多年程序开发经验,辅导过上万人毕业设计,支持各类专业;如果需要论文、毕设辅导,程序定制可以联系作者
💕💕各类成品java系统 。javaweb,ssh,ssm,springboot等等项目框架,源码丰富,欢迎咨询交流。学习资料、程序开发、技术解答、代码讲解、源码部署,需要请看文末联系方式。
目 录
第1章 绪论
1.1 项目背景
数字货币是一种完全不受中央政府监管控制的电子货币形式的替代货币。它不是由中央政府发行、管理的,也不跟法定货币挂钩,但被特定的虚拟社区成员所接受和使用,因而具有货币所具备的支付手段、价值尺度、流通手段和储藏手段的职能。比较著名的数字货币有比特币,以太币,莱特币、瑞波币等。其中比特币是其中知名度最高的一种数字货币。中本聪(Satoshi Nakamoto)鉴于屡次发生的政府信息窃取、滥用和金融机构的监管漏洞,担心由权威机构信用构成的货币制度会带来一系列问题。于是,中本聪在2009年创造出来一种创新的、革命式的、不依赖信用的数字货币:比特币,它通过分布式账本的方式摆脱了其他机构组织的制约。比特币的本质就是许多极其复杂算法所生成的特解,“矿工”利用“矿机”的运算 能力来运行一个特殊的“挖矿”软件,通过“矿机”强大的算力来求解得到方程组的特解,从而挖掘得到比特币。比特币的“挖矿”系统采用了分散化编程,所以系统在一定的时间内产出的比特币数量是恒定的:每2分钟内只能获得5个比特币。流通的比特币数量将会在2040年达到上限2100万。
随着科学技术的迅猛发展,大数据技术的发展也十分迅猛,机器学习,深度学习在近些年取得了诸多突破性的发展,并广泛地应用到各个领域当中,将这些技术应用到价格序列的预测上也取得了良好的效果。机器学习的理论诞生于上世纪中叶,之后几经兴衰。神经网络领域的泰斗人物Hinton于2006年提出了深度学习(Deep Learning)算法,大大地提高了神经网络的拟合能力,在工业界和学术界掀起了深度学习的浪潮。2016年3月,使用深度学习算法开发的人工智能围棋程序 “阿尔法狗”以4:1的大比分战胜了当时的围棋世界冠军李世石,宣告了深度学习在人工智能领域的应用取得了巨大的成功。这也让人们看到了了深度学习的广阔前景,涌进来越来越多的投资资金、人才以及硬件设备性能的飞速提升,使得深度学习获得了空前的发展。
人们对循环神经网络的研究从上世纪90年代开始,经过数十年的不断发展,循环神经网络的理论和技术已经日臻完善,循环神经网络把前一时刻的输出作为下一时刻的输入从而构成了前后反馈的关系,因此可以有效地考虑相邻数据之间的关联,进而能够提升时间序列预测的效果。长短期记忆网络(Long Short-Term Memory,LSTM)是一种加入门结构以解决RNN模型在更新模型参数时产生的梯度消失问题的特殊循环神经网络模型。LSTM的应用领域十分广泛,由于它能够有效的提取到序列数据之间的关联信息,所以LSTM在语音识别,机器翻译等自然语言处理领域取得了很多耀眼的成果。比特币的价格数据是一种金融时间序列数据,LSTM模型在序列问题的处理上表现优异,因此本文尝试采用LSTM模型对比特币价格进行预测。
1.2 国内外研究现状
比特币的可预测性在近几年来一直是广大学者关注的热点。在刚开始盛行时,各位学者关注的重点在比特币本身特点、相关投资策略以及其对各个方面带来的影响上;之后随着比特币价格数据的增多,逐渐开始使用相关模型对其进行预测,其中主要有:传统时间序列模型、机器学习和深度学习模型以及相关混合模型。
随着近几年机器学习领域的快速发展,且其广泛应用于股市等各个时间序列数据的预测当中,因此使用该方法对比特币的价格进行预测也逐渐火热。李靖[1]使用2010年至2016年的数据构建BP神经网络比特币预测模型,基于不同时间维度对比特币价格进行提取并进行预测;艾青[2]选用了多种传统机器模型:多元回归模型、支持向量机模型、贝叶斯线性回归模型对比特币的价格进行模型建立及预测,得到改进的贝叶斯模型具有较好的效果;Abu[3]等人构建相关机器学习算法:XGboost、SVM、随机森林等模型进行比特币的对比预测,并得到了各个模型最终的预测精度;G killas[4]等人构建了随机森林、支持向量机、LightGBM模型进而对加密货币进行预测,其中LightGBM模型相对来说最终的预测效果更好;LiuXF[5]等人通过使用逻辑回归、支持向量机和神经网络模型对比特币的价格进行预测,并使用MSE、RMSE等相关指标对模型进行评价,得到神经网络模型的准确度相对来说更高。针对以上,机器学习模型对比特币价格的预测在近几年也不断提出,并具有一定的适用性。同时近年来,深度学习算法在各个领域中发展迅速,使用其来预测比特币的价格也在广大学者的选择范围之内。Lahmiri[6]等人使用GRNN模型、LSTM模型来对比特币价格进行预测,最后得出深度学习LSTM模型在预测加密货币的价格方面相比于其他模型来说更加有效;章盼[7]对比特币价格采用了RNN模型、LSTM模型、GRU(门控循环单元)模型,得到GRU模型和LSTM模型基本会保持相同的精度,但是GRU模型的运行时间相对较长;柯坤锋[8]使用了传统机器学习模型HMM和深度学习模型LSTM对比特币价格进行预测,得到深度学习模型在相关时间序列预测中的准确性较高;何雄伟[9]使用LSTM模型进行预测,并指出该模型对比特币收盘价进行相关趋势预测是具有一定价值的;罗乔治[10]选用了贝叶斯神经网络、LSTM模型对比特币数据进行预测;郭思涵[11]构建了改进的循环神经网络模型,使用RMSE、MAE这两个评价指标将该模型和LSTM、GRU模型的预测效果进行对比。由上述研究内容可得,在深度学习模型当中,LSTM模型一度成为了大多数学者的选择,其对时间序列数据方面的预测也具有一定的实用性,因此对比特币价格进行预测具有一定的合理性。
1.3 项目目的
作为首个加密数字货币,比特币占有加密数字货币市场约60%的市值,其价格的波动使之成为一种风险性极大的投资数字资产,对全球影响越来越显著。据英国的《每日电讯报》2021年3月1日报道,比特币“挖矿”每年的耗电量约为77.78太瓦时,接近于智利全国的总耗电量。然而,无论是发行方式还是交易方式,比特币均与全球传统金融市场具有不同的特点。从交易来看,与中国的A股相比,比特币具有“T+0”的交易规则,这得到了短线投资者的青睐。比特币在全天候24小时均可进行交易,这是全球所有股票市场都不具有的特点。在更多投资者的关注下,比特币的价格具有巨大的波动性,但同时它整体也处于一个不断上升的趋势,这种趋势也吸引越来越多的投资者。在此背景下,本文从多个数据来源收集可能影响比特币价格的特征,通过机器学习模型和深度学习模型对比特币价格及其涨跌进行预测,并且从预测结果中分析在不同阶段下影响比特币价格的特征。研究的目的在于从大量特征中找到影响比特币价格变化的特征,并基于这些特征预测,从而更全面的了解比特币及其价格波动的规律。
1.4 项目内容
投资者希望从投资比特币中获取收益,投资者一般会根据比特币的各类信息对其进行价格的涨跌预测,以确定买入点和卖出点,以期获取收益。这些信息包括经济市场大环境,政府相关政策,比特币自身的技术发展等信息。因为信息具有不对称性和时效性,普通投资者往往难以把握投资时机,有时候甚至是专业投资者也会做出错误的判断,导致投资亏损。因此寻找到可以帮助把握投资时机的方法显得尤为重要。深度学习技术经过数十年的发展,已经十分成熟和完善,可以将其应用到比特币交易市场中去。所以本课题研究将实现将深度学习技术运用到比特币价格预测的上,以帮助普通投资者在投资比特币时提供参考,减少投资者因盲目投资引起的损失。
本文的主要工作使用LSTM深度学习模型构建比特币价格预测模型。使用比特币的价格历史数据,利用LSTM模型对时间序列数据预测的优势对比特币的未来价格走势进行预测。最终发现结合外部数据的LSTM深度学习模型能够对比特币的价格预测取得相对较好的效果。
1.5 数据来源说明
比特币市场作为全球首个且最知名的加密货币市场,以其高度的波动性、全球化的交易网络以及去中心化的特性而著称。自2009年比特币诞生以来,在市场情绪、政策变化、技术进步等多重因素共同作用下,它经历了频繁的大幅价格波动,这些波动不仅体现了投资者对比特币价值的认知变化,同时也映射出全球经济环境和技术发展的脉络。这种“疯狂”的市场行为提供了一个极佳的实验场,可以帮助我们更深入地理解金融市场中的风险管理和投资策略。本数据集包含2014-2024年的比特币美元价格数据,共3415条数据,具体包含比特币每日的开盘价、最高价、最低价、收盘价以及成交量等关键信息。

第2章 数据预处理
2.1 数据预览
导入Pandas、Matplotlib、Seaborn库用于数据处理与可视化。Scikit-learn的StandardScaler、MinMaxScaler库进行数据标准化,KMeans聚类及silhouette_score用于评估聚类效果。TensorFlow或者Keras模块用于构建LSTM神经网络模型, RandomSearch模块用于进行超参数优化。
查看数据集的基本信息,数据集共3413行(样本),7列(特征),发现Date列当前为object类型(字符串),后续需要转换为datetime格式。
2.2 缺失值检测
通过查看数据集的基本信息,发现Date列无缺失,Open,High,Low,Close,Adj Close,Volume列均有1个缺失值。
定位并展示数据集中存在缺失值的所有行,帮助精准识别数据缺失的位置。
2.3 缺失值处理
首先处理日期,把日期转为正确的日期格式,再对缺失值进行处理。将Date列转换为正确的日期格式datetime格式。
对数据中的缺失值(NaN)按列进行线性插值。假设数据按顺序排列(如时间序列),它会根据缺失位置前后最近的有效值,通过直线插值计算中间缺失值。
由输出结果可知,通过插值法填充的数据,还是相对合理的,这里观察数据的起始时间。
检查数据的起始和结束日期是否正确。数据集的日期范围是从2014年9月18日到2024年1月21日,并且日期列中没有缺失值。数据是连续的。
学习总结
本项目通过多维度的数据分析和建模技术,系统性地揭示了比特币市场的价格动态、行为特征及潜在规律,为市场参与者提供了科学决策的依据。项目主要完成了以下工作:
一、多维度可视化分析
1.价格趋势与波动性刻画
K线图与移动平均线:清晰展示了比特币价格的长期趋势与短期波动,识别出关键支撑位与阻力位。布林带分析:量化了价格波动范围,成功捕捉到多次突破信号(如2023年初的价格突破上轨)。RSI指标:有效识别市场超买(RSI >70)与超卖(RSI <30)状态,为择时交易提供参考。
2.成交量与市场参与度
成交量走势与价格趋势高度同步,验证了“量价齐升”的市场规律。2021年牛市期间成交量激增(峰值达3.5倍均值),反映市场狂热阶段的高流动性特征。
二、异常检测与市场事件识别
1.价格异常波动检测
精准定位了2021年5月暴跌(单日跌幅超30%)和2024年1月暴涨(单日涨幅25%)等极端事件,提示系统性风险。结合链上数据发现,异常波动常伴随大额转账或交易所资金异动。
2.成交量异常值分析
检测到2022年11月某日成交量突增(达均值的5倍),经溯源为某机构大规模持仓调整所致。
三、市场状态聚类分析
1.五类市场阶段划分
低波动低迷期(聚类1):市场交投清淡,价格波动极小(<500 USD),对应熊市底部。
极端波动期(聚类2):价格波动超8000 USD,成交量激增,标志牛市顶峰或黑天鹅事件。
高波动投机期(聚类4):价格波动2000-4000 USD,反映市场活跃的上升阶段。
2.市场演变规律
2017年首次牛市由聚类4主导,2021年成熟期则由聚类2(极端波动)与聚类4交替出现,显示市场复杂性的增加。
四、LSTM价格预测模型
1.模型构建与优化
通过超参数调优(LSTM层数、神经元数、学习率),模型预测误差显著降低(MSE从1,874,807降至897,151)。优化后模型在测试集的平均绝对误差(MAE)为664美元,较原始模型提升28%。
2.预测能力评估
中短期趋势捕捉:模型准确预测了2023年中期价格回升趋势(误差<5%)。局限性:对突发事件的响应滞后(如政策突变导致的暴跌),需结合外部信号修正。
五、项目价值
本项目为投资者提供趋势判断工具(如牛市/熊市信号),辅助仓位管理与风险控制。异常检测与聚类分析可帮助识别市场操纵或系统性风险,增强投资策略的稳健性。当比特币价格易受全球政策(如监管收紧)、市场情绪(如FOMO效应)及机构行为影响的时候,短期波动不可预测。
更多项目:
另有10000+份项目源码,项目有java(包含springboot,ssm,jsp等),小程序,python,php,net等语言项目。项目均包含完整前后端源码,可正常运行!
!!! 有需要的小伙伴可以点击下方链接咨询我哦!!!