基于机器学习KNN算法的心力衰竭疾病分析研究 毕业论文+项目源码及数据库文件

!!! 有需要的小伙伴可以通过文章末尾名片咨询我哦!!!

 💕💕作者:优创学社
💕💕个人简介:本人在读博士研究生,拥有多年程序开发经验,辅导过上万人毕业设计,支持各类专业;如果需要论文、毕设辅导,程序定制可以联系作者
💕💕各类成品java系统 。javaweb,ssh,ssm,springboot等等项目框架,源码丰富,欢迎咨询交流。学习资料、程序开发、技术解答、代码讲解、源码部署,需要请看文末联系方式。

基于机器学习的心力衰竭疾病分析研究

=

摘  要: 我们通过使用数据挖掘与机器学习方法对心力衰竭数据集进行科学化合理化分析。我们通过使用大量心力衰竭患者的临床数据和相关生理指标数据组合成的数据集,对心力衰竭患者的数据集进行了数据预处理、数据可视化等步骤。我们采用了多种模型方法进行预测模型,并在此基础上对数据集进行了训练和测试。

实验结果显示,我们所提出的机器学习模型在预测心力衰竭的发生和进展方面表现出较高的准确性和预测能力。通过特征重要性分析,我们发现血压、心率、肌酐等指标在心力衰竭预测中起到重要的作用。这些结果为心力衰竭的早期诊断和分类提供了新的方法和洞察。

总而言之,基于心力衰竭数据集的数据挖掘分析研究显示出良好的预测性能,并提供了对心力竭患者的生理指标的重要认识。这些研究结果对于改善心力衰竭的诊断和治疗具有重要的临床意义。进一步的研究可以探索更多的机器学习算法和特征选择方法,以提升心力衰竭预测的准确性和可靠性。

关键词:数据分析;心力衰竭:治疗:辅助:社会责任:

                              

目  录

1章  绪论.............................................................................................................. 4

1.1  研究背景和意义.............................................................................................. 4

1.1.1  研究背景............................................................................................... 4

1.1.2  研究意义............................................................................................... 5

1.2  国内外研究现状.............................................................................................. 5

1.2.1  基于心力衰竭数的数据分析的国内外研究.............................................. 5

1.3  研究目的及方法.............................................................................................. 6

1.3.1  研究目的............................................................................................... 6

1.3.2  研究方法............................................................................................... 7

2  心力衰竭分类理论基础............................................................................. 8

2.1  机器学习和数据挖掘....................................................................................... 8

2.1.1  分类算法............................................................................................... 8

2.1.2  聚类算法............................................................................................... 8

2.2  数据探索性分析.............................................................................................. 8

2.3  特征工程......................................................................................................... 9

2.3.1  特征衍生............................................................................................... 9

2.4  模型构建......................................................................................................... 9

2.5  模型评估......................................................................................................... 9

第3章  数据分析................................................................................................... 11

3.1  数据集简介.................................................................................................... 11

3.1.1  数据基本信息....................................................................................... 11

3.2  数据预处理.................................................................................................... 13

3.3  数据探索性分析............................................................................................ 14

3.3.1  特征统计分析...................................................................................... 14

3.3.2  特征缺失值分析................................................................................... 16

3.3.3  数据可视化.......................................................................................... 16

3.3.4  特征分析............................................................................................. 21

3.3.5  特征相关性分析................................................................................... 23

第4章 基于多类算法分析心力衰竭数据模型..................................................... 24

4.1模型的构建与训练.................................................................................... 24

4.2 模型评估................................................................................................. 24

4.2.1 ROC曲线................................................................................................. 24

5 总结分析..................................................................................................... 34

5.1 心力衰竭因素的相关性分析............................................................................ 34

5.1.1 心力衰竭的相关系数............................................................................ 34

5.1.2 心力衰竭的可视化分析........................................................................ 34

6  总结和展望............................................................................................... 37

参考文献.................................................................................................................... 38

1章  绪论

1.1  研究背景和意义

1.1.1  研究背景

随着社会的发展,人们对自己的健康监控需求越来越高,希望自己能了解疾病的状态,因此我们基于心力衰竭此疾病,对各年龄段的人群的检测数据进行分析处理,通过对这些数据的分析处理,比如心脏衰竭的前兆,多发作什么年龄的人群以及心脏衰竭与哪项指标有关,如何有效的对这些数据进行分析呢?因此我们通过使用机器学习对获取的数据进行各项分析,也许可以给这些问题提供解决方案,有效的系统性综合性的分析数据。

心力衰竭是一种心血管系统疾病,由于心脏功能受损导致血液无法有效流动。据世界卫生组织统计,全球有2900万人患有心力衰竭。随着人口老龄化和不健康的生活方式等因素的影响,心力衰竭的发病率逐年增加,对公共卫生和医疗资源造成了巨大负担.

目前,临床医生使用传统的方法来诊断和治疗心力衰竭,但是这种方法仍然存在许多问题。例如,病情评估和治疗方案的选择往往基于经验和专业知识,而缺乏个性化的依据。同时,许多潜在的风险因素被忽略或没有得到充分利用。

通过数据挖掘分析,可以发现心力衰竭与多种指标有关,例如年龄、性别、血压、心率、心肺功能等。此外,心力衰竭的发病年龄段也有所不同,可能与遗传、环境和生活习惯等多种因素有关。通过对这些数据的分析处理,可以更好地了解心力衰竭的发病机制和预测疾病发展趋势。

为了有效地分析这些数据,可以采用机器学习技术进行数据挖掘和模式识别。机器学习算法能够处理大规模数据集并自动发现隐藏的模式和规律。通过机器学习技术,可以预测患者的病情、风险和治疗效果,为医生提供更准确的诊断和治疗方案。

近年来,数据挖掘与机器学习技术在医疗领域的应用逐渐受到重视。数据挖掘与机器学习算法具有处理大数据集和挖掘隐藏模式的能力,能够更准确地预测患者的病情、风险和治疗效果。因此,将数据挖掘与机器学习技术应用于心力衰竭数据分析,可以进一步提高病人的治疗效果和临床诊断的准确性。除此之外,心力衰竭是一种动态变化的疾病,采用机器学习技术能够实时监测患者病情并进行有效干预,降低心力衰竭的风险和死亡率。

1.1.2  研究意义

基于心力衰竭数据集的数据挖掘分析的研究意义主要体现在以下几个方面:

  1. 促进医学研究的发展:数据挖掘和分析技术在医学领域的应用是近年来研究的热点之一。通过对心力衰竭数据集进行数据挖掘分析,可以深入了解疾病的发病机制、预测疾病发展趋势、发现新的治疗靶点等,为医学研究的发展做出贡献。
  2. 提高诊断准确性和及时性:通过对心力衰竭数据集进行数据挖掘分析,可以发现隐藏的疾病模式和规律,帮助医生更准确地诊断疾病,避免漏诊或误诊。同时,通过数据挖掘技术,可以及时发现疾病的异常变化,提高疾病监测的及时性。
  3. 促进跨学科合作和交流:心力衰竭数据集的数据挖掘分析需要涉及到多个学科的知识和技能,例如医学、计算机科学、统计学等。通过跨学科的合作和交流,可以充分发挥各学科的优势,推动心力衰竭数据挖掘分析的发展和应用。

1.2  国内外研究现状

1.2.1  基于心力衰竭数的数据分析的国内外研究

 随着医疗数据不断积累和计算机技术的发展,数据挖掘和分析在心力衰竭领域的应用越来越广泛。在国内,心力衰竭数据挖掘分析的研究主要集中在以下几个方面:

1.疾病诊断和预测:通过对心力衰竭数据集的分析,发现疾病的模式和规律,提高疾病的诊断准确性和预测能力。例如,利用机器学习算法对心衰患者的临床数据进行挖掘,预测患者一年内的死亡风险等。

2.疾病预防和监测:通过对心力衰竭的流行病学和危险因素进行研究,了解疾病的发病机制和风险因素,为疾病的预防和早期干预提供依据。同时,通过实时监测患者的病情变化和异常指标,可以及时发现疾病的复发和进展,提高疾病监测的准确性和及时性。

3.治疗方案优化:通过数据挖掘技术,发现不同治疗方案和药物对心力衰竭患者的疗效和副作用等方面的关联规则和模式,为医生制定个性化的治疗方案提供依据。

 在国外,心力衰竭数据挖掘分析的研究也主要集中在以下几个方面:

1.临床决策支持:利用数据挖掘技术对心力衰竭患者的临床数据进行处理和分析,为医生提供更准确的诊断和治疗方案,提高临床决策的准确性和效率。

2.疾病机制研究:通过数据挖掘技术,深入了解心力衰竭的发病机制和病理生理过程,发现新的治疗靶点和药物作用机制。

3.远程监测:利用移动医疗技术和传感器技术等手段,实时监测患者的病情变化和异常指标,提高疾病监测的准确性和及时性,为远程医疗和居家护理提供支持。

综上所述,基于心力衰竭数据集的数据挖掘分析在国内外都受到了广泛的关注和研究。研究内容涵盖了疾病诊断和预测、治疗方案优化、疾病预防和监测等方面。随着技术的不断发展和数据的不断积累,心力衰竭数据挖掘分析将会在临床实践中发挥越来越重要的作用。

1.3  研究目的及方法

1.3.1  研究目的

探索心衰临床用药规律和新处方:通过对中医药治疗心衰相关文献进行分析研究,并对临床研究中治疗心衰患者的一般特征、心功能、主要原发病、常见证型、治法及遣方用药等进行归纳总结,初步探索心衰临床用药规律和新处方,以期更好的指导临床和科研用药。
    提高诊断准确性和及时性:通过数据挖掘技术,发现隐藏的疾病模式和规律,提高心力衰竭的诊断准确性和及时性,避免漏诊或误诊。
    优化治疗方案:通过数据挖掘技术,发现不同治疗方案和药物对心力衰竭患者的疗效和副作用等方面的关联规则和模式,为医生制定个性化的治疗方案提供依据。
    提高疾病预防和监测效果:通过数据挖掘分析,了解心力衰竭的发病机制和风险因素,为疾病的预防和早期干预提供依据。同时,通过实时监测患者的病情变化和异常指标,可以及时发现疾病的复发和进展,提高疾病监测的准确性和及时性。
    促进跨学科合作和交流:心力衰竭数据集的数据挖掘分析需要涉及到多个学科的知识和技能,例如医学、计算机科学、统计学等。通过跨学科的合作和交流,可以充分发挥各学科的优势,推动心力衰竭数据挖掘分析的发展和应用。

促进医学研究的发展:数据挖掘和分析技术在医学领域的应用是近年来研究的热点之一。通过对心力衰竭数据集进行数据挖掘分析,可以深入了解疾病的发病机制、预测疾病发展趋势、发现新的治疗靶点等,为医学研究的发展做出贡献。

1.3.2  研究方法

本文通过利用数据挖掘与机器学习的方法,通过对获取的心力衰竭病人的状态指标因素进行数据分析,实现对心力衰竭的因素进行清晰的了解病人此时的状态进行提前的干预治疗。

本文实验中使用的程序设计语言是Python,代码编辑工具是jupyter notebook,数据分析库和机器学习库包括numpypandasmatplotlibsklearnmlxtend等。

2  心力衰竭分类理论基础

2.1  机器学习和数据挖掘

机器学习是一门交叉学科,涉及概率论、统计学、近似理论、最优化理论和复杂算法等知识,使计算机这种工具可以模拟人类学习方式。有些问题使人们不能直接编写出代码让计算机程序解决,这时就需要借助于实例数据或经验去学习,至于如何去学习,机器学习有各种各样的学习方法(算法)。

数据挖掘是从大量数据中挖掘有趣模式和知识的过程。数据挖掘的别名是从数据库中发现知识,数据挖掘在许多领域吸纳了大量技术,其中有统计学、机器学习等。

数据挖掘将数据转换成有用的信息和知识。获取的信息和知识可以广泛用于各种应用。本文通过数据挖掘得到分类模型,当现实数据输入模型,模型输出的结果就可以提供给用户或管理者等,让他们判断下一步的决策。比如,当医生收到病人的检测信息,医生就可以及时的干预病人的病情。这就促使病人能得到更及时的治疗,让病人能够更快的恢复,这也是利用机器学习对挖掘到的病人的情况了解。文本将通过机器学习等技术进行数据挖掘。

2.1.1  分类算法

机器学习中非常见的分类算法有逻辑回归、K近邻、决策树、支持向量机、随机森林等。分类模型或分类器需要通过分类算法去训练数据得到,这个阶段也叫学习阶段。本次实验我们通过使用KNN算法对心力衰竭数据集进行分类。

2.1.2  聚类算法

机器学习中得常见的聚类算法有K-means、DBSCAN、HDBSCAN等。聚类算法把样本(实例)划分称多个簇,簇内的样本得相度高,而与其他簇中的样本相似度低。

2.2  数据探索性分析

数据探索性分析是指通过数据集了解特征间的相互关系以及特征与目标值之间的关系,从而帮助我们后期更好地进行特征工程和训练模型。这是数据挖掘中十分重要的一步。

2.3  特征工程

在数据挖掘业内流传这一句话:“特征做不好,参数调到老”;最后可能模型效果还不好。特征工程是指在给定的任务中,在原数据上设计出更适合某个模型的特征的过程[9]。通俗地说是为了训练出来的模型的预测能力更强,需要对特征进行设计等工作。

通常特征工程的工作像是在走迷宫,充满了死胡同。对于经验丰富的工程师来说特征工程会做的更好,这里的经验包括技巧经验、业务的熟悉程度等。数据挖掘的绝大部分的时间都是花费在特征工程上。

2.3.1  特征衍生

特征衍生在现有的特征基础上,通过一些变换、组合等方法衍生出一系列的特征。一般的特征衍生方法有交叉组合、分组统计等。通常是通过暴力手段衍生出许多特征,并不能非常准确的衍生出好的特征,所以这也是特征工程道路曲折的原因之一。

2.4  模型构建

通过机器学习中的算法对数据进行训练从而建立模型,使得训练出来的模型在新的、未见过的数据上表现良好。

2.5  模型评估

       模型评估是指对于一种具体方法输出的最终模型,使用一些指标和方法来评价它性能。通俗的说就是评估它准确地进行分类的能力高不高。

表2-1   混淆矩阵

二分类混淆矩阵

真实值

正例

负例

预测值

正例

TP

FP

负例

FN

TN

混淆矩阵是分析模型识别不同类别的一种工具。表2-1混淆矩阵中真假例(True Positive,简称:TP)指分类模型把正类实例正确分类的集合数量;真负例(True Negative,简称:TN)指分类模型把负类实例正确分类的集合数量;假正例(False Positive,简称:FP)指分类模型把负类实例错误分为正类的集合数量;假负例(False Negative,简称:FN)指分类模型把正类实例错误分为负类的集合数量[11]。给定c个类,混淆矩阵可以是一个c*c的表,也可以是c个2*2的二分类混淆矩阵,选择其中一个类作为正类,其余都为负类。多分类的问题的时候,通常是按照多个二分类矩阵进行分类模型的评估指标计算,本文是多分类问题,所以模型评估指标计算的时候是安装多个二分类矩阵进行计算。

常见分类模型的评估指标及其计算公式为:

                Accuracy=(TP+TN)/(TP+TN+FP+FN)      (2-1)

                        Precision=TP/(TP+FP)              (2-2)

                          Recall=TP/(TP+FN)               (2-3)

             F1 score=2*Precision*Recall/(Precision+Recall)  (2-4)

(2-1)式为准确率计算式;(2-2)式为精准率计算式,Precision简称:P;(2-3)式为召回率计算式,Recall简称:R;(2-4)式为F1分数计算式,F1 score简称:F1。

此外,接收者操作特征曲线(Receiver operating characteristic curve,简称:ROC)下区域面积(Area under curve,简称:AUC)评估指标[7]。AUC越接近0.5,模型性能越低,完全正确的模型AUC为1.0,通常AUC为0.8到0.9,模型就有较好的性能。

如果是混淆矩阵是二分类,则用Precision、Recall、F1指标可以直接评价,但在一个n分类的混淆矩阵上的时候这些评价指标有宏平均和微平均。

宏平均(macro average,简称:macro avg),是对每一个类别的评价指标求和后平均,也就是对所以类别求算术平均。例如,宏平均精准率(macro-average precision,简称:macro P):
                             macro P= 1ni=1nPi                 (2-5)

微平均(micro average,简称:micro avg)是统计全局(全部类别)的混淆矩阵计算相应指标。例如,微平均精准率(micro-average precision,简称:micro P):
                          micro P = i=1nTPii=1nTPi+n=1nFPi              (2-6)

在多分类问题中,如果存在数据不平衡问题,则使用微平均得到的效果更加可信。

加权平均(weighted average,简称:weighted avg)是对每一个类别赋予一个权值,各个类别的相应指标乘以权重加和就是最终指标值。例如,加权平均精准率(weighted average precision,简称:weighted P)由(2-7)式计算得出。另外还有样本平均(samples average,简称:samples avg),它和跟微平均计数方式相同。
                  weighted P= P1*w1+P2*w2+...+Pn*wn      (2-7)

K折交叉验证是模型评估常用方法之一。K折交叉验证(K-fold cross-validation)是等量拆分数据集为k份,每一轮选k-1份做为训练集来训练模型,选1份做验证集用来评估模型,进行k论后得到k个评分,综合这k个模型的评估指标分数来判断模型的优劣。

总结和展望

心力衰竭(Heart Failure,HF)是一种复杂的临床状态,其特征为心脏无法泵出足够的血液以满足身体需求。随着人口老龄化和心血管疾病发病率的上升,心力衰竭的发病率和死亡率也在逐年增加。为了更好地理解心力衰竭,研究者们广泛采用了数据分析的方法。

在本次心力衰竭数据分析研究中,我们采用了数据挖掘与机器学习技术,它被广泛应用于预测诊断和风险评估、预测远期事件以及选择治疗方案等方面。机器学习模型能够基于患者的各种数据特征,进行精准的诊断和风险评估,提前采取有效的干预措施,从而降低心力衰竭的发病率和死亡率。同时,机器学习模型还可以预测患者未来可能发生的各种事件,如再入院、死亡等,有助于制定合理的治疗计划和监测策略。此外,机器学习模型还可以为医生推荐最适合患者的治疗方案,提高治疗效果。

在心力衰竭数据分析研究中,机器学习技术常用于以下方面:

预测诊断和风险评估:
利用机器学习模型,可以帮助医生针对心力衰竭的患者进行更加精准的诊断和风险评估,提前采取有效的干预措施,从而降低心力衰竭的发病率和死亡率。

预测远期事件:

机器学习模型可以预测心力衰竭患者未来可能发生的各种事件,如再入院、死亡等,有助于制定合理的治疗计划和监测策略。

选择治疗方案:

机器学习模型可以基于患者的数据特征,为医生推荐最适合患者的治疗方案,提高治疗效果。在进行心力衰竭数据分析研究时,要注意以下几点:

数据的质量和数量:

良好的数据质量是机器学习技术分析心力衰竭的前提条件。数据集应该包含足够的患者信息,并且要避免缺失和错误的数据。

算法选择:选择合适且最优的算法对数据进行处理分析。

使用Python的机器学习模块来对心力衰竭数据进行分析和预测。我们使用了Pandas库来读取和清洗数据,使用Seaborn和Matplotlib库来进行数据可视化,最后使用sklearn库的多个算法模型来进行分类分析和模型评估。通过对多个算法模型的比较和分析,我们可以使用最适合我们数据集的模型来预测心力衰竭的风险和治疗效果,并在医疗中进行实际应用。

最后,通过本次对心力衰竭数据集的数据分析研究可以得到影响心力衰竭的各类相关因素,在实现科技飞跃发展的时期,我们可以利用机器学习、spark编程等实现科技与病情数据的结合。从而可以更快的分析病人的数据,辅助医生对病人进行更快的分析病人情况。本研究通过数据分析方法研究了心力衰竭的相关因素和预测模型,将数据分析与医学相联系,在研究过程中,我们注重医学伦理原则、医生社会责任和团队合作等方面,充分体现了思政在科学研究中的重要性。我们将继续关注新技术的发展和应用,以期为心力衰竭的诊断和治疗做出更多贡献。

更多项目:

另有10000+份项目源码,项目有java(包含springboot,ssm,jsp等),小程序,python,php,net等语言项目。项目均包含完整前后端源码,可正常运行!

!!! 有需要的小伙伴可以点击下方链接咨询我哦!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

优创学社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值