题目描述
原本有一台电脑,编号为1,现在又扩增了n-1台,编号为2~n,每台电脑都用网线连接到一台先前安装的电脑上,已知连接相邻两台电脑的网线长度均为1,求解第i台电脑到其他电脑的最大网线长度。
Input
输入文件包含多组测试数据。对于每组测试数据,第一行一个整数N (N<=10000),接下来有N-1行,每一行两个数,对于第i行的两个数,它们表示与i号电脑连接的电脑编号以及它们之间网线的长度。网线的总长度不会超过10^9,每个数之间用一个空格隔开。
Output
对于每组测试数据输出N行,第i行表示i号电脑的答案 (1<=i<=N).
解题思路
题目其实是要求输出以每一个点为初始点对应的最长路,显然,每一个最长路肯定在树的直径上,所以我们先找树的直径,先从任意一点开始,找到距离该点最远的叶子节点v1,再从v1开始遍历找到距离v1最远的叶子节点v2,这两个点v1,v2就是树的直径对应的两个端点,然后再从v1,v2分别开始遍历每一个点,两者的距离最大值,就是该点对应的最长路,因此只需三次dfs遍历,就能获得每个点的最长路。另外,在从v1找v2时,就可以开始记录v1到每个点的距离(其实就是每个点到v1的距离),再从v2开始遍历记录v2到每个点的距离,对于每一个点,比较这两个距离,最大的那个就是它的最长路长度。
实现代码
#include<iostream>
#include<vector>
using namespace std;
struct edge
{
int v,w;
};
vector<edge> e[10005];
int v1,v2; //v1,v2分别是树中直径对应的两个叶子
bool vis[10005];
int dis1[10005],dis2[10005]; //从v1和v2分别出发对应的每一个点的网线长度
int to_v1[10005],far1,far2; //找v1时,每一个点的网线长度,far1,far2是v1,v2相对于起始点的长度;
void find_v1(int u)
{
vis[u]=1;
for(int i=0;i<e[u].size();++i)
{
int v=e[u][i].v;
if(vis[v]==0)
{
vis[v]=1;
to_v1[v]=to_v1[u]+e[u][i].w;
if(far1<to_v1[v])
{
far1=to_v1[v];
v1=v;
}
find_v1(v);
}
}
}
void find_v2(int u)
{
vis[u]=1;
for(int i=0;i<e[u].size();++i)
{
int v=e[u][i].v;
if(vis[v]==0)
{
vis[v]=1;
//cout<<u<<" "<<v<<endl;
// cout<<e[u][v].w<<endl;
dis1[v]=dis1[u]+e[u][i].w;
if(far2<dis1[v])
{
far2=dis1[v];
v2=v;
}
find_v2(v);
}
}
}
void v1_to_v2(int u)
{
vis[u]=1;
for(int i=0;i<e[u].size();++i)
{
int v=e[u][i].v;
if(vis[v]==0)
{
vis[v]=1;
dis2[v]=dis2[u]+e[u][i].w;
v1_to_v2(v);
}
}
}
void clear_vis(int n)
{
for(int i=1;i<=n;++i)
vis[i]=0;
}
void clear_all(int n)
{
for(int i=1;i<=n;++i)
{
vis[i]=0;
dis1[i]=0;
dis2[i]=0;
to_v1[i]=0;
e[i].clear();
}
v1=0;
v2=0;
far1=0;
far2=0;
}
int main()
{
int n;
while(cin>>n)
{
for(int i=2;i<=n;++i)
{
edge x,y;
cin>>x.v>>x.w;
y.v=i;
y.w=x.w;
e[i].push_back(x);
e[x.v].push_back(y);
}
find_v1(1);
clear_vis(n);
find_v2(v1);
clear_vis(n);
v1_to_v2(v2);
for(int i=1;i<=n;++i)
cout<<max(dis1[i],dis2[i])<<endl;
clear_all(n);
}
return 0;
}
总结
本题主要用到图的遍历,需要理解题目要求,题目本身就是构建了一颗树(图),每台电脑到其他电脑的最大网线长度,其实就是求图中每个点的最长路,只需要找到直径,再对每个点判断其到直径端点的最大距离即可。需要注意的是,题目有多组数据输入,因此每次输出后需要重新置零相关参数。