程序设计Week6——A-氪金带东

题目描述

原本有一台电脑,编号为1,现在又扩增了n-1台,编号为2~n,每台电脑都用网线连接到一台先前安装的电脑上,已知连接相邻两台电脑的网线长度均为1,求解第i台电脑到其他电脑的最大网线长度。

Input

输入文件包含多组测试数据。对于每组测试数据,第一行一个整数N (N<=10000),接下来有N-1行,每一行两个数,对于第i行的两个数,它们表示与i号电脑连接的电脑编号以及它们之间网线的长度。网线的总长度不会超过10^9,每个数之间用一个空格隔开。

Output

对于每组测试数据输出N行,第i行表示i号电脑的答案 (1<=i<=N).

解题思路

题目其实是要求输出以每一个点为初始点对应的最长路,显然,每一个最长路肯定在树的直径上,所以我们先找树的直径,先从任意一点开始,找到距离该点最远的叶子节点v1,再从v1开始遍历找到距离v1最远的叶子节点v2,这两个点v1,v2就是树的直径对应的两个端点,然后再从v1,v2分别开始遍历每一个点,两者的距离最大值,就是该点对应的最长路,因此只需三次dfs遍历,就能获得每个点的最长路。另外,在从v1找v2时,就可以开始记录v1到每个点的距离(其实就是每个点到v1的距离),再从v2开始遍历记录v2到每个点的距离,对于每一个点,比较这两个距离,最大的那个就是它的最长路长度。

实现代码

#include<iostream>
#include<vector>
using namespace std;

struct edge
{
	int v,w;
};
vector<edge> e[10005];
int v1,v2;		//v1,v2分别是树中直径对应的两个叶子 
bool vis[10005];
int dis1[10005],dis2[10005];	//从v1和v2分别出发对应的每一个点的网线长度 
int to_v1[10005],far1,far2;		//找v1时,每一个点的网线长度,far1,far2是v1,v2相对于起始点的长度; 

void find_v1(int u)
{
	vis[u]=1;
	for(int i=0;i<e[u].size();++i)
	{
		int v=e[u][i].v;
		if(vis[v]==0)
		{
			vis[v]=1;
			to_v1[v]=to_v1[u]+e[u][i].w;
			if(far1<to_v1[v])
			{
				far1=to_v1[v];
				v1=v;
			}
			find_v1(v);
		}
	}
}

void find_v2(int u)
{
	vis[u]=1;
	for(int i=0;i<e[u].size();++i)
	{
		int v=e[u][i].v;
		if(vis[v]==0)
		{
			vis[v]=1;
			//cout<<u<<" "<<v<<endl;
		//	cout<<e[u][v].w<<endl;
			dis1[v]=dis1[u]+e[u][i].w;
			if(far2<dis1[v])
			{
				far2=dis1[v];
				v2=v;
			}
			find_v2(v);
		}
	}
}

void v1_to_v2(int u)
{
	vis[u]=1;
	for(int i=0;i<e[u].size();++i)
	{
		int v=e[u][i].v;
		if(vis[v]==0)
		{
			vis[v]=1;
			dis2[v]=dis2[u]+e[u][i].w;
			v1_to_v2(v);
		}
	}
}

void clear_vis(int n)
{
	for(int i=1;i<=n;++i)
		vis[i]=0;
}

void clear_all(int n)
{
	for(int i=1;i<=n;++i)
	{
		vis[i]=0;
		dis1[i]=0;
		dis2[i]=0;
		to_v1[i]=0;
		e[i].clear();
	}
	v1=0;
	v2=0;
	far1=0;
	far2=0;
}

int main()
{
	int n;
	while(cin>>n)
	{
		for(int i=2;i<=n;++i)
		{
			edge x,y;
			cin>>x.v>>x.w;
			y.v=i;
			y.w=x.w;
			e[i].push_back(x);
			e[x.v].push_back(y);
		}
		find_v1(1);
		clear_vis(n);
		find_v2(v1);
		clear_vis(n);
		v1_to_v2(v2);
		for(int i=1;i<=n;++i)
			cout<<max(dis1[i],dis2[i])<<endl;
		clear_all(n);
	}
	return 0;
}

总结

本题主要用到图的遍历,需要理解题目要求,题目本身就是构建了一颗树(图),每台电脑到其他电脑的最大网线长度,其实就是求图中每个点的最长路,只需要找到直径,再对每个点判断其到直径端点的最大距离即可。需要注意的是,题目有多组数据输入,因此每次输出后需要重新置零相关参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值