题目
求1~n中能被a或b或c整除的数的个数。
输入
每组数据占一行,依次包括整数n,a,b,c,直到输入0 0 0 0为止
(1<=a,b,c<=n<=1e9)
输出
输出1~n中能被a或b或c整除的数的个数,每组占一行
容斥原理为在计数时,必须注意没有重复,没有遗漏。为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
对于这个题就是先把能整除的都加上,再减掉重复的;
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
using namespace std;
long long beishu(long long a,long long b)
{
long long x1=a,x2=b;
if(a<b)
{
long long c=a;
a=b;
b=c;
}
while(b)
{
long long ans=a%b;
a=b;
b=ans;
}
return x1*x2/a;
}
int main()
{
long long n,a,b,c,a1,b1,c1,k;
while(~scanf("%lld %lld %lld %lld",&n,&a,&b,&c))
{
if(a==0&&b==0&&c==0&&n==0)
break;
a1=n/a;
b1=n/b;
c1=n/c;
k=a1+b1+c1-n/beishu(a,b)-n/beishu(a,c)-n/beishu(b,c)+n/beishu(a,beishu(b,c));
printf("%lld\n",k);
}
return 0;
}