农产品价格数据可视化展示分析

Flask+echarts做多图联动查询界面:

  1. 引言

    • 目的和背景
    • 文档结构
  2. 农产品价格数据/空气质量指数AQI可视化展示分析

    • 数据收集和准备

      • 数据源描述
      • 数据收集方法
      • 数据清洗与预处理
    • 可视化界面设计与实现

      • 界面需求描述
      • 使用echarts和pyecharts实现可视化界面
      • 输入参数和数据展示方式
    • 可视化分析结果展示

      • 不同城市和农产品的可视化界面展示
      • 数据分析和解读
  3. 自主选择课题

    • 选题背景和目的

    • 网页数据爬取和预处理

      • 网站管理者爬虫协议遵守描述
      • 网页爬取方法和工具选择
      • 数据清洗和存储方式
    • 数据分析和可视化

      • 提取存储的部分数据描述
      • 数据分析方法和工具选择
      • 使用pyecharts对数据进行可视化
      • flaks框架实现前后端分离
    • 可选项目:间隔性爬虫做动态数据可视化

      • 动态数据获取和更新描述
      • 使用pyecharts实现动态可视化界面
  4. 课程设计文档编写

    • 结果展示和分析
    • 设计思路和实现方法
    • 遇到的问题和解决方案
    • 效果评估和改进方向
  5. 结论

    • 总结课程设计的目标和成果
    • 提出可能的改进和扩展方向
  6. 参考文献

请注意,以上只是一个简单的建议,你可以根据具体需求和要求进行调整。同时,你还应该在文档中添加适当的标题、子标题和图表等,以增强可读性和清晰度。1、农产品价格数据/空气质量指数AQI可视化展示分析,使用echarts和pyecharts实现一个可视化的界面,数据源是我之前发给你们的农产品价格变动数据,输入不同城市和农产品名称,可以展示不同的可视化界面。
2、自主选择课题,通过分析爬取相应网站的网页数据(注意:要遵守网站管理者所制定的爬虫协议);
将爬取的数据做预处理并存储到文件或者数据库中;
根据提取存储的部分数据做分析处理;
使用pyecharts对数据进行可视化,要求使用flask框架做前后端分离(*可选项目:间隔性爬虫做动态数据可视化)。
编写课程设计文档
最终结果类似下面图片中的类型:在这里插入图片描述

操作视频:

Flask+echarts做多图联动查询界面农产品价格数据可视化展示分析

query文件:

`# -*- coding: utf-8 -*-
from flask import Flask, request, render_template
from pro import getdata
app = Flask(__name__)
@app.route('/query/', methods=['GET', 'POST'])
def query():
    if request.method == "POST":
        city = request.form.get("city")
        product = request.form.get("product")
        dict_return = getdata(city,product)
        return render_template('query.html', dict_return=dict_return)
    else:
        dict_return = getdata('杭州市','商品20')
        return render_template('query.html', dict_return=dict_return)
if __name__ == '__main__':
    app.run(debug=True)`

数据:
在这里插入图片描述在这里插入图片描述在这里插入图片描述

废了半天时间找的各省js文件!!!:

**
在这里插入图片描述


获取Q:2777.077.178

### 关于农产品价格数据可视化的技术和方法 #### 可视化技术的选择 在进行农产品价格数据可视化时,可以选择多种工具和技术来完成这一目标。例如,在前端展示部分,ECharts 是一种非常强大的 JavaScript 图表库,能够生成高质量的交互式图表[^1]。而 PyEcharts 则是 ECharts 的 Python 版本封装,允许开发者更方便地通过 Python 脚本生成 HTML 文件中的图表。 对于后端开发,Flask 提供了一个轻量级 Web 应用程序框架,适合用来构建 RESTful API 接口以及管理前后端分离架构下的请求响应逻辑[^2]。这种组合方式不仅便于实现动态更新功能,还能够让用户根据实际需求筛选特定条件下的商品类别和地区范围内的市场行情变化情况。 #### 数据获取与预处理流程 为了获得用于可视化的原始资料,可以通过网络爬虫抓取公开资源上的最新资讯,并按照既定规则清洗整理成结构化形式存入数据库中待后续调用分析。在此过程中需要注意遵循各站点设定好的 Robots 协议条款限制以免触犯法律风险。 当涉及到时间序列类型的数值型字段转换操作时,Pandas 这样的数据分析库会显得格外有用处——它提供了丰富的函数接口来进行诸如缺失值填补、异常点检测剔除等工作步骤自动化执行。 #### 实现案例说明 以某地区主要粮食作物批发报价为例,假设我们已经收集到了过去一年里每日记录下来的若干种谷物类别的平均成交单价信息,则可以采用折线图的形式直观反映出它们各自随季节周期性涨跌规律特征;另外再辅之柱状堆叠区域填充样式呈现总量构成比例关系以便观察是否存在此消彼长现象发生等等。 ```python from pyecharts.charts import Line, Bar import pandas as pd df = pd.read_csv('grain_prices.csv') line_chart = ( Line() .add_xaxis(list(df['date'])) .add_yaxis("小麦", list(df['wheat_price']), is_smooth=True) .add_yaxis("玉米", list(df['corn_price']), is_smooth=True) ) bar_chart = ( Bar() .add_xaxis(["第一季度","第二季度","第三季度","第四季度"]) .add_yaxis("总销量",[sum_q1,sum_q2,sum_q3,sum_q4]) ) line_chart.render_notebook() bar_chart.render_notebook() ``` 上述代码片段展示了如何利用 Pandas 加载 CSV 文件之后分别创建线条图形表示两种农作物的价格走势对比效果,同时还定义了一组条形统计分布状况作为补充参考资料。 ---
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SupAor

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值