LeetCode-63. 不同路径(II)(中等)

63. 不同路径(II)(中等)

题目地址:https://leetcode-cn.com/problems/unique-paths-ii/

1. 题目描述及示例

      一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
      现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
      网格中的障碍物和空位置分别用 1 和 0 来表示。

示例一:

在这里插入图片描述

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:

  1. 向右 -> 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右 -> 向右

示例二:

在这里插入图片描述

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

2. 题解和代码实现

      该题和 62.不同路径的主要区别在于所给的网格里夹杂障碍物;在这里依然使用动态规划的解决方案。对于障碍物的处理,不仅仅是该点不可达,而且也不能够通过该点到达别处,即不可到达它的右方和下方。同样使用paths[i][j]来代表该位置的路径数目。

     转移矩阵

      首先,我们要进行锁定转移矩阵。在这里,在obstacleGrid[i][j]==0,即ij所对应的位置没有障碍物,该位置可以到达,那么针对**paths[i][j]**位置上的路径总共有种情况:

注意:在这里使用paths[i][j] == -1来表示该点没有路径也就是不可到达

  1. paths[i-1][j] != -1 && paths[i][j-1] != -1(即通过该位置的左边和上边均能到达该位置
    即:paths[i][j] = paths[i-1][j] + paths[i][j-1]
  2. paths[i-1][j] != -1 && paths[i][j-1] == -1(即通过该位置的上边可以到达该位置)
    即:**paths[i][j] = paths[i-1][j] **
  3. paths[i-1][j] == -1 && paths[i][j-1] != -1(即通过该位置的左边能到达该位置)
    即:paths[i][j] = paths[i][j-1]
  4. paths[i-1][j] == -1 && paths[i][j-1] == -1(即通过该位置的左边和上边均不能到达该位置
    即:paths[i][j] = -1

obstacleGrid[i][j]==1,即ij所对应的位置有障碍物,那么该位置不可到达,即paths[i][j] = -1

     初始状态

      在这里同样进行初始化第一行和第一列,在没有障碍物的情况下,第一行和第一列上所有元素均只有一条路径可以抵达;此时有障碍物,那么我们思考,对于第一行上,某一元素位置有障碍物,那么肯定的是,该位置后面的位置均不可抵达,对于第一列有着同样的效果。
      那么对第一行的初始化有以下代码:

for(i=0;i<m;i++){ // m 代表行数
   if(obstacleGrid[i][0]!=1){
       paths[i][0] = 1;
    }else{
          while(i<m){  // 针对障碍物后面的位置均不可到达
             paths[i][0] = -1;
             i++;
          }
          break;
     }
}

      那么对第一列的初始化有以下代码:

for(j=0;j<n;j++){// n代表列数
    if(obstacleGrid[0][j]!=1){
          paths[0][j] = 1;
     }else{
           while(j<n){ // 针对障碍物后面的位置均不可到达
               paths[0][j] = -1;
               j++;
           }
           break;
     }
}  

代码实现(C++ 2022-3-14)

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        // 其实和不同路径 I 很类似,只是,该点有障碍物,那么该点不可达
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        int paths[m][n];
        int i,j;
        // 初始化第一行
        for(i=0;i<m;i++){ // m代表行数
            if(obstacleGrid[i][0]!=1){
                paths[i][0] = 1;
            }else{
                while(i<m){ // 针对障碍物后面的位置均不可到达
                    paths[i][0] = -1;
                    i++;
                }
                break;
            }
        }
        // 初始化第一列
        for(j=0;j<n;j++){// n代表列数
            if(obstacleGrid[0][j]!=1){
                paths[0][j] = 1;
            }else{
                while(j<n){ // 针对障碍物后面的位置均不可到达
                    paths[0][j] = -1;
                    j++;
                }
                break;
            }
        }  
        // 初始化所有元素  
        for(i=1;i<m;i++){
            for(j=1;j<n;j++){
                if(obstacleGrid[i][j]!=1){
                    if(paths[i-1][j]!=-1&&paths[i][j-1]!=-1){
                        paths[i][j] = paths[i-1][j] + paths[i][j-1];
                    }else if(paths[i-1][j]!=-1&&paths[i][j-1]==-1){
                         paths[i][j] = paths[i-1][j];
                    }else if(paths[i-1][j]==-1&&paths[i][j-1]!=-1){
                        paths[i][j] = paths[i][j-1];
                    }else{
                        paths[i][j] = -1;
                    }
                }else{
                    paths[i][j] = -1;
                }
            }
        }
        if(paths[m-1][n-1]==-1) //代表终点不可达
            return 0;
        return paths[m-1][n-1];
    }
};

3. 总结

      其实也没那么复杂,只要掌握好位置走向,初始化状态,终结状态,参照62.不同路径该题迎刃而解。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问,比如最长公共子序列、背包问、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的型,很多目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划目,按照难度从简单到困难排列。每个目都有详细的目描述、输入输出样例、目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问和最优子结构性质的问。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问,如背包问、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法LeetCode动态规划标签下的目涵盖了各种难度级别和场景的问。从简单的斐波那契数列、迷宫问到可以用于实际应用的背包问、最长公共子序列等,难度不断递进且话丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问拆分成子问的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法,例如斐波那契数列、矩阵链乘法、背包问等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问。例如,经典的“爬楼梯”问,要求我们计算到n级楼梯的方案数。这个问的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问、保存中间状态来求解问。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问,但在某些场景下并不适用。例如,某些问的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解都非常重要。除了刷以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zh-yi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值