- 博客(11)
- 问答 (1)
- 收藏
- 关注
原创 MONAI 3D目标检测官方demo实践与理解(二)模型理解
在上一节介绍了MONAI的3D目标检测案例,以及如何运行训练代码。MONAI 3D目标检测官方demo实践与理解(一)项目搭建,训练部分的运行本篇主要是对该项目的模型进行理解。
2023-03-02 13:19:59 1364
原创 AnchorGeneratorWithAnchorShape 模块的介绍与使用
AnchorGeneratorWithAnchorShape 是MONAI的detection中生成anchor的模块。
2023-02-27 11:07:21 261
原创 MONAI 3D目标检测官方demo实践与理解(一)项目搭建,训练部分的运行
最近在学习医学图像相关的3D目标检测,刚好MONAI更新了3D目标检测相关的模块,就去找来官方的案例学习,此为第一部分
2022-07-08 11:46:45 2423 5
原创 Pre-Trained Image Processing Transformer (IPT) 代码环境配置|入门向
这是一篇帮助刚入门的同学使用anaconda环境在pycharm上配置IPT环境的代码,需要多卡设备或服务器论文链接:https://arxiv.org/abs/2012.00364GitHub链接:https://github.com/huawei-noah/Pretrained-IPT笔记使用软件:Notion笔记链接:Notion笔记链接...
2022-04-10 11:15:39 1772
原创 语义分割论文阅读——DDRNet:用于实时和准确的道路场景语义分割的深度双分辨率网络
摘要语义分割是自动驾驶汽车理解周围场景的一项关键技术。如今模型出色的表现通常是以繁重的计算和冗长的推理时间为代价的,这对自动驾驶来说是不可容忍的。使用轻量级架构(编码器-解码器或双路径)或在低分辨率图像上进行推理,最近的方法实现了非常快的场景解析,甚至在单个1080Ti GPU上以超过100 FPS运行。然而,这些实时方法与基于dilation backbone的模型在性能上仍有很大差距。为了解决这个问题,我们提出了一个专门为实时语义分割设计的高效骨干网系列。所提出的深度双分辨率网络(DDRNets)由.
2022-04-06 21:56:20 1152 2
原创 Jupyter 环境配置,快捷打开,默认打开路径,代码自动补全
本文主要介绍Jupyter的相关配置添加anaconda环境进入要添加的环境:activate your env执行指令:python -m ipykernel install --user --name env_name(your env)修改默认打开路径在cmd里输入指令:jupyter notebook --generate-config根据提示找到jupyter_notebook_config.py 的路径并打此文件找到c.NotebookApp.notebook_dir这个变量
2022-03-30 11:46:38 1285
原创 C++ 结构体/共用体占用字节数计算,画图通俗理解偏移量
基本知识64位机器各个数据类型所占存储空间:数据类型存储大小char8 bit= 1byteshort16 bit = 2 byteint32 bit = 4 bytelong64 bit = 8 bytefloat32 bit = 4 bytedouble64 bit = 8 bytelong long64 bit = 8 byte其中long类型在32位机器上只占4byte,其他类型与64位相同union的字节数计算先看
2022-03-06 15:11:29 1915
空空如也
monai.metrics.compute_fp_tp_probs函数的使用方法
2022-03-30
TA创建的收藏夹 TA关注的收藏夹
TA关注的人