Deep Syntax-Semantics Model(2020 EMNLP)

在这里插入图片描述

 Improving Text Understanding via Deep Syntax-Semantics Communication

动机

Syntax-Tree model与sequential semantic model相结合,提高下游任务性能。

Introduction

句子中句法和语义的比较。相同的颜色表示相同(相似)的语义目标。

在这里插入图片描述

Model

多层结合模型
在这里插入图片描述

定义

句子 S S S = { w 1 w_1 w1,…, w n w_n wn},对应的sequential 表示:
在这里插入图片描述
树表示:
在这里插入图片描述

Sequential Encoder

Bi-LSTM:
在这里插入图片描述

Tree Encoder(TreeLSTM or GCN)

TreeLSTM:Bi-LSTM:
在这里插入图片描述
两个方向连接:
在这里插入图片描述
GCN:
在这里插入图片描述
N N N ( ( j j j ) ) 表示邻居节点,取GCN最后一层的输出作为树表示:
在这里插入图片描述

Deep Communication Model

将Sequential encoder 和Tree encoder视为一个完整的unit。
在这里插入图片描述

Local Interaction

Local Interaction的动机是鼓励sequential encoder和Tree encoder 从彼此的信息传播模式中学习更多(attenton)。
首先,当前步骤 t t t的sequential encoder 中的每个节点将上一时间步骤的相邻节点作为附加输入:
在这里插入图片描述
普通的attention:
在这里插入图片描述
n n n b b b s s s表示邻居
同样,Tree encoder 亦是如此:
在这里插入图片描述
在这里插入图片描述

Sentence-level Global Propagation

将 Deep Communication Model中的 h h h a ^a a l ^l l l ^l l i _i i 更新为:
h h h a ^a a l ^l l l ^l l i _i i = [ h h h s ^s s e ^e e q ^q q , ^, t ^t t i _i i, h h h t ^t t r ^r r e ^e e e ^e e , ^, t ^t t i _i i]
采用一个gate机制(只有输入门)进行global 传播:
在这里插入图片描述
上面带横线的 h h h表示ungated 数值。

Decoding and Training

Inner - attention:
在这里插入图片描述

  1. 如果是自然语言推理任务:
    两个句子被表示:
    在这里插入图片描述
    然后输出一个概率。
  2. 如果是分类任务,直接对输出softmax,取最大值作为被分类类别:
    在这里插入图片描述

LOSS:交叉熵+ L 2 L_2 L2正则化
在这里插入图片描述

冷启动

为了避免冷启动训练,分别预训练独立的sequential encoder和tree encoder,然后在step 0 将它们的参数作为初始状态 h 0 h_0 h0

结果

event factuality prediction(EFP):事件真实性预测
relation classification for drug-drug interaction(Rel):药物相互作用的关系分类
semantic role labeling (SRL):语义角色标注
在这里插入图片描述
自然语言推理任务:
在这里插入图片描述

Ablation Study

原文用的GloVe(88.2),实验证明用预训练模型对性能有大幅度提升。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值